Evaluation of GSMaP Data for Extreme Rain Events and Causing Floods in East Kotawaringin

Nadine Ayasha(1), Leny Octaviana Bota(2),


(1) Stasiun Meteorologi H. Asan Kotawaringin Timur, Stasiun Meteorologi Tardamu Sabu Raijua, Indonesia
(2) Stasiun Meteorologi H. Asan Kotawaringin Timur, Stasiun Meteorologi Tardamu Sabu Raijua, Indonesia

Abstract

On 12 May 2021, 12 August 2021, 6 September 2021 and 27 June 2022, extreme rain occured with an intensity of 58.85 mm/day, 101.3 mm/day, 124.4 mm/day and 176.8 mm/day respectively in East Kotawaringin. These phenomena occurred during the dry season and caused flooding, which is a rare condition during the dry season in East Kotawaringin. This study aims to evaluate extreme rainfall using GSMaP (Global Satellite Mapping of Precipitation) data, where analysis using GSMaP has never been done before in East Kotawaringin. These GSMaP data were processed and compared with the observation data from the Meteorological Station of H. Asan, East Kotawaringin. After that, the GSMaP rainfall results are verified using statistical methods, namely RMSE, correlation coefficient and bias. The verification results show that the bias gives underestimate results for all dates. In addition, the RMSE values on 12 May 2021, 12 August 2021, 6 September 2021 and 27 June 2022 are 10.83, 17.32, 12.41 and 34.03, respectively. These high RMSE values indicate that the GSMaP rainfall value is quite far from the observed rainfall value. The correlation value between GSMaP rainfall and observations has a high correlation with values of 0.84, 0.90, 0.96 and 0.98 for each date. These results show that the GSMaP data has a good correlation value and can be used for extreme rainfall analysis at the Meteorological Station of H. Asan, East Kotawaringin.

Keywords

GSMaP, Extreme Rain, Flood, Dry Season

Full Text:

PDF

References

Ahrens, D. & Henson, R. (2019). Meteorology Today: An Introduction to Weather, Climate, and The Environment, 12nd Edition. USA: Cengage Learning.

Ayasha, N. (2021). A Comparison of Rainfall Estimation Using Himawari-8 Satellite Data In Different Indonesian Topographies. International Journal of Remote Sensing and Earth Sciences (IJReSES), 17(2), 189-200.

Chen, Z., Qin, Y., Shen, Y., & Zhang, S. (2016). Evaluation of global satellite mapping of precipitation project daily precipitation estimates over the Chinese mainland. Advances in Meteorology, 2016.

Kurniawan, A. (2020). Evaluasi Pengukuran Curah Hujan Antara Hasil Pengukuran Permukaan (AWS, HELLMAN, OBS) dan Hasil Estimasi (Citra Satelit= GSMaP) Di Stasiun Klimatologi Mlati Tahun 2018. Jurnal Geografi, Edukasi dan Lingkungan (JGEL), 4(1), 1-7.

Natadiredja, S., Sukarasa, I. K., & Sutapa, G. N. (2018). Validasi Curah Hujan Harian Berdasarkan Data Global Satellite Mapping and Precipitation (GSMAP) di Wilayah Bali dan Nusa Tenggara. Bulletin Fisika, 19, 12-15.

Pratama, A., Agiel, H. M., & Oktaviana, A. A. (2022). Evaluasi Satellite Precipitation Product (GSMaP, CHIRPS, dan IMERG) di Kabupaten Lampung Selatan. Journal of Science and Applicative Technology, 6(1), 32-40.

Rahman, R. N., & Indra, I. (2020). Validasi Performa Satelit Presipitasi Gsmap dalam Mengestimasi Curah Hujan di Jabodetabek. Jurnal Widya Climago, 2(2).

Riduwan. (2016). Dasar-dasar Statistika. Bandung: Alfabeta.

Sofiati, I., & Avia, L. Q. (2018, June). Analysis of rainfall data based on GSMaP and TRMM towards observations data in Yogyakarta. In IOP Conference Series: Earth and Environmental Science (Vol. 166, No. 1, p. 012031). IOP Publishing.

Stull, R. (2015). Pracical Meteorology An Algebra-based Survey of Atmospheric Science. Canada: University of British Columbia.

Tashima, T., Kubota, T., Mega, T., Ushio, T., & Oki, R. (2020). Precipitation extremes monitoring using the near-real-time GSMaP product. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5640-5651.

Thi, T. H., Matsumoto, J., & Nodzu, M. I. (2022). Evaluation of the Global Satellite Mapping of Precipitation (GSMaP) data on sub-daily rainfall patterns in Vietnam. Science of the Earth, 44(1), 33-54.

Wilks, D., (2019). Statistical Methods In The Atmospheric Sciences, 4th Edition. India: Elsevier.

Refbacks

  • There are currently no refbacks.