Kinetika reaksi oksidasi pada biosolar (B20) dengan antioksidan alami

Megawati Megawati(1), Handoyo Handoyo(2), Ibnu Inu Setiawan(3),


(1) Teknik Kimia, Fakultas Teknik, Universitas Negeri Semarang
(2) Teknik Kimia, Fakultas Teknik, Universitas Negeri Semarang
(3) Teknik Kimia, Fakultas Teknik, Universitas Negeri Semarang

Abstract

Biosolar (B20) memiliki komposisi biodiesel yang dihasilkan dari asam lemak tak jenuh, yang menyebabkan degradasi oksidatif pada biodiesel. Antioksidan alami memiliki senyawa fenolik yang dapat mencegah oksidasi biodiesel dengan menyumbang atom hidrogen. Reaksi oksidasi dilakukan pada sampel biosolar (B20) dengan ditambahkan ekstrak daun sirsak (DS) dan ekstrak kulit manggis (KM), dipanaskan dan diinjeksi dengan udara secara kontinu. Antioksidan menghambat atau menghentikan oksidasi dengan mendonorkan atom hidrogen pada reaksi berantai radikal bebas dari biosolar (B20). Selama reaksi oksidasi, suhu akan terus naik hingga suhu yang ditentukan (variasi suhu 100, 110, dan 120 oC) lalu suhu dijaga (suhu akhir) dan diinjeksi dengan udara 2,3 L/min. Hasil oksidasi diambil saat suhu 100 oC dan seterusnya dengan interfal waktu 10 menit. Bilangan asam digunakan untuk menganalisis kandungan asam pada sampel. Kinetika reaksi didekati dengan model homogen orde satu dan dua. Laju reaksi sebagai fungsi dari konversi dan waktu diselesaikan dengan metode regresi linier. Untuk konstante laju reaksi mengikuti persamaan Arrhenius dengan nilai energi aksivasi (Ea) sebesar 37,7; 38,9; dan 41 kJ/mol dan faktor tumbukan (A) sebesar 1070,2; 1047,65; dan 1394,09.

Keywords

Biosolar (B20), Antioksidan, Kinetika, Oksidasi

Full Text:

PDF

References

Chan, H.W.S. (2005). In : Autoxidation of Unsaturated Lipid. Ed: Chan, H.W.S. Academic Press, New York, p.1.

Demirbas, Ayhan. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management 50: 923–927 .

Dinkov R., Hristov G., Stratiev D., Aldayri V.B. (2009). Effect of commercially available antioxidants over biodiesel/diesel blends stability. Fuel. 88:732–7.

Domingos, A.K., E.B. Saad, W.D. Vechiatto, H.M. Wilhelm and L.P. Ramos. 2007. The Influence of BHA, BHT and TBHQ on the Oxidation Stability of Soybean Oil Ethyl Ester (Biodiesel). J. Braz. Chem. Soc. 18: 416-423.

Fernandes D. M., Serqueira D.S., Portela F. M., Assunção R.M.N., Munoz R.A.A, Terrones MGH. (2012). Preparation and characterization of methylic and ethylic biodiesel from cottonseed oil and effect of tert-butylhydroquinone on its oxidative stability. Fuel. 97:658–61.

Fattah I.M.R., Masjuki H.H., Kalam M.A., Mofijur M., Abedin M.J. (2014). Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers Manage. 79:265–72

Galvan D, Juliane R. Orives, et al. (2013). Determination of the Kinetics and Thermodynamics Parameters of Biodiesel Oxidation Reaction Obtained from an Optimized Mixture of Vegetable Oil and Animal Fat. Energy & Fuel: 27, 6866−687

Gregorio, A. P. H., Borsato, D., Moreira, I., Silva, E. T., Romagnoli E. S., & Spacino, K. R. (2017). Apparent Activation Energy and Relative Protection Factor of Natural Antioxidants in Mixure with Biodiesel. Biofuels. 8(5), 1-8.

Kivevele, T. T., & Zhongjie Huan. (2013). Effects of Antioxidants on the Cetane number, Viscosity, Oxidation Stability, and Thermal Properties of Biodiesel Produced from Nonedible Oils. Energy Technology. 537-543

Knothe G. (2007). Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 88, 669–677

Levenspiel, O. (1999). Chemical reaction engineering. 3rd ed. New York: John Wiley and Sons Inc. p. 27–9

Megawati, Sediawan, W. B., Sulistyo, H., & Hidayat, M. (2015). Sulfuric acid hydrolysis of various lignocellulosic materials and its mixture in ethanol production. Biofuels. 6(6), 331-340

Megawati, Karnowo, Widya A., Pramesti A., Ayuning A. (2017). Influence Of Butanol As Additive On Mixed Palm Oil-Diesel Fuel (B30) Characteristics. International Conference on Engineering Technology, Vocational Education and Social Science. I(1), 77-85

McCormick, R.L., M. Ratcliff, L. Moens and R. Lawrence. (2007). Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Process. Technol. 88: 651-657.

Mittelbach, M. and S. Schober. (2003). The influence of antioxidants on the oxidation stability of biodiesel. J. Am. Oil Chem. Soc. 80: 817-823.

Pereira, G. G, Morales, A., Marmesat, S. Ruiz-Mendez, M. V. Barrera-Arellano, D. dan Dobarganes, M.C. 2015. Effect of temperature on the oxidation of soybean biodiesel. Grasas y Aceites. 66(2).

Prabu, A. Premkumar, I. J. I. dan Pradeep, A. 2017. The effectiveness of antioxidant additives on the oxidation stability of jatropha biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-7

Ramalho, V. C., Jorge, N. (2006). Antioxidants Used in Oils, Fats and Fatty Foods. Quim. 755−760

Sarin, R., M. Sharma, S. Sinharay and R.K. Malhotra. (2007). Jatropha–Palm biodiesel blends: An optimum mix for Asia. Fuel 86: 1365-1371.

Shahabuddin M, Masjuki HH, Kalam MA, et al. (2012). Effect of Additive on Performance of C.I. Engine Fuelled with Bio Diesel. Energy Procedia; 14:1624-1629

Xin J, Imahara HS. (2009). Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel. ;88:282–286.

Zhou L. (2013). Reaction Kinetics Of Biodiesel Production By Using Low Quality Feedstock. Thesis. University of Regina

Refbacks

  • There are currently no refbacks.




Alamat Penerbit: Gedung Dekanat, Fakultas Teknik, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang, Jawa Tengah, Indonesia, 50229. Telp./Fax.: (024) 8508101. Email: [email protected]

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats