Profil Fitoestrogen Kacang Gude (Cajanus cajan) dalam Darah, Urin dan Feses pada Tikus Putih Betina

C N Primiani(1), P Pujiati(2),


(1) Pendidikan Biologi FPMIPA IKIP PGRI Madiun, Indonesia
(2) Pendidikan Biologi FPMIPA IKIP PGRI Madiun, Indonesia

Abstract

Pengembangan kacang gude sebagai sumber fitoestrogen merupakan salah satu upaya pelestarian keragaman hayati. Tujuan penelitian ini untuk menganalisis metabolisme fitoestrogen kacang gude dalam tubuh dan retensinya dalam jaringan. Hewan coba menggunakan sembilan ekor tikus putih betina galur Sprague Dawley umur 6-7 bulan, dan dikelompokkan menjadi 3 kelompok.  Kelompok I kontrol (P1), kelompok II diberi larutan kacang gude perbandingan 24g : 24ml (P2) dan kelompok III diberi larutan kacang gude perbandingan 8g : 24ml (P3). Pemberian larutan kacang gude menggunakan sonde, dimasukkan dalam lambung. Darah, urin, dan feses dikoleksi pada jam ke-8, ke-16, dan ke-24 (fraksi I, fraksi II, dan fraksi III) setelah pemberian kacang gude. Analisis fitoestrogen daidzein dalam darah, urin, dan feses dilakukan menggunakan high performance liquid chromatography (HPLC). Hasil analisis menunjukkan kadar daidzein kacang gude di darah lebih tinggi daripada di urin dan feses. Kadar daidzein meningkat pada fraksi II dan menurun pada fraksi III. Daidzein mengalami absorbsi, distribusi, ekskresi, dan retensi di dalam jaringan. Retensi fitoestrogen daidzein dalam jaringan sebesar 95,472%. 

The purpose of this research to analyze the metabolism of phytoestrogens pigeon pea in the body and its retention in the tissues. Animals used nine female Sprague-Dawley rats 6-7 months. The rats were grouped into 3 treatment groups. The first group was the control (P1), the second group contained those given a solution of pigeon pea seeds under the ratio of 24g : 24ml (P2) and the third group was given a solution of pigeon pea seeds under 8g : 24ml ratio (P3). The provision of pigeon pea solution by gavage using a sonde into the stomach. Blood, urine, and feces were collected on the hour all 8 hours of the 16th, and the 24th hour (fractions I, II fractions and fractions III). Analysis of phytoestrogen daidzein in the blood, urine, and feces was performed using high performance liquid chromatography (HPLC). The analysis showed that the levels of daidzein pigeon pea in the blood is higher than the levels in the urine and feces. Daidzein levels increased in the second fraction and decreases in fraction III. Daidzein experiencing absorption, distribution, excretion and retention in the tissues. Retention phytoestrogen daidzein in tissue 95.472% 

Keywords

phytoestrogens profile; pigeon pea; daidzein; metabolism

Full Text:

PDF

References

Brown NM & Setchell. 2001. Animal models Impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest 81:735-747.

Idridge AC. 1982. High Performance Liquid Chromatography Separation of Soybean Isoflavones and Their Glucosides. J Chromatogr.234:494-496.

Ioku K, Pongpiriyadacha Y, Konishi Y, Takei Y, Nakatani N & Terao J. 1998. Β-glucosidase activity in the rat small intestine toward quercetin monoglucosides. Biosci Biotechnol Biochem. 62:1428-1431.

Jagla F, Riecansky L & Pilsakova L. 2010. The physiological actions of isoflavone phytoestrogens. Physiol Res. 59:651-664.

Kim M, Han J, & Kim SU. 2008. Isoflavone daidzein: chemistry and bacterial metabolism. J Appl Biol Chem. 51(6):253-261.

Milligan SR & Kalita JC. 2010. In vitro estrogenic potency of phytoestrogen-glycosides and some plant flavanoids. Indian J Sci Technol 3(12):1142-1147.

Murphy PA. 1980. Separation of genistin, daidzin, and their aglycones and coumestrol by gradient high performance liquid chromatography. J Chromatogr. 211:166-169

Orhan LE, Tosun F, Tamer U, Duran A, Alan B. & Kok AF. 2011. Quantification of genistein and daidzein in two endemic genista species and their antioxidant activity. J Serb Chem Soc. 76(1):35-42.

Pottenger LH, Domoradzki JY, Markham DA, Hansen SC, Cagen SZ & Waechter JM. 2000. The relative bioavailability and metabolism of bisphenol a in rats is dependent upon the route of administration. Toxicol. Sci. 54:3-28.

Primiani CN. 2015. Pemanfaatan bahan alam lokal bengkuang (Pachyrhizus erosus) dan alpukat (persea americana mill) terhadap struktur jaringan hati dan ginjal tikus putih. Prosiding Seminar Nasional Biologi, 6 Agustus 2015. pp. 21-26, Universitas Diponegoro.

Shelnutt SR, Cimino CO & Wiggins PA. 2000. Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein. Cancer Epidemiol Biomarkers Prev. 9:413-419.

Setchell KDR. 2000. Absorption and metabolism of soy Isoflavones from food to dietary supplements and adults to infants. J Nutr. 130:654S-655S.

Watanabe S, Yamaguchi M, Sobue T, Takashi T, Miura T, Arai Y, Mazur W, Wahala K & Adlercrutz H. 1998. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (Kinako). J Nutr 128: 1710-1715.

Wiseman H, Casey K, Clarke DB, Barnes KA, Bowey E. 2002. Isoflavone aglycon and glucoconjugate content of high- and low-soy U.K. foods used in nutritional studies. J Agric Food Chem. 50:1404-1410.

Xiang C, Qiao X, Wang Q, Li R, Miao W, Guo D & Ye M. 2011. From single compounds to herbal extract: a synergy to systematically characterize the metabolites of licorice in rats. Drug Met Deposition. 39(9):1597-1608.

Zhang Y, Wang GJ, Song TT, Murphy PA, & Hendrich S. 1999. Urinary disposition of the soybean isoflavones daidzein, genistein, and glycitein differs among with moderate fecal isoflavone degradation activity. J Nutr. 129:957-962.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.