SEQUENTIAL INJECTION-FLOW REVERSAL MIXING (SI-FRM) UNTUK PENENTUAN KREATININ DALAM URIN

A Sabarudin(1), ERN Wulandari(2), H Sulistyarti(3),


(1) Jurusan Kimia, Fakultas MIPA, Universitas Brawijaya, Indonesia Laboratorium Kimia Analitik, FMIPA, Universitas Brawijaya, Jl. Veteran 65145, Malang
(2) Jurusan Kimia, Fakultas MIPA, Universitas Brawijaya, Indonesia Laboratorium Kimia Analitik, FMIPA, Universitas Brawijaya, Jl. Veteran 65145, Malang
(3) Jurusan Kimia, Fakultas MIPA, Universitas Brawijaya, Indonesia Laboratorium Kimia Analitik, FMIPA, Universitas Brawijaya, Jl. Veteran 65145, Malang

Abstract

Jumlah kreatinin yang diekskresikan melalui urin menunjukkan keadaan ginjal seseorang. Dalam penelitian ini, dikembangkan metode untuk penentuan kreatinin secara otomatis yaitu sequential injection-flow reversal mixing (SI-FRM). Pendeteksian kreatinin didasarkan pada pembentukan senyawa berwarna (merah-orange) yang dihasilkan dari reaksi antara kreatinin dan asam pikrat dalam suasana basa dan diukur pada panjang gelombang 530 nm. Reaksi pembentukan senyawa kreatinin-pikrat dilakukan melalui pembentukan segmen antara sampel dan reagen di-holding coil dan selanjutnya dilakukan proses flow reversal di-mixing coil. Parameter-parameter yang mempengaruhi metode ini diuji secara detail. Hasil penelitian menunjukkan bahwa kondisi optimum pengukuran kreatinin yaitu menggunakan konsentrasi asam pikrat 0,035 M dan NaOH 3,5%, laju alir flow reversal 5 µL/detik, laju alir produk reaksi 20 µL/detik, jumlah flow reversal empat kali dan menggunakan tiga segmen (pikrat-kreatinin-pikrat) dengan masing-masing volume segmen 100 µL. Metode SI-FRM ini telah diaplikasikan langsung untuk penentuan kadar kreatinin dalam urin dengan limit deteksi 1,7 µg/g.

 

The amount of creatinine excreted in urine indicates kidney condition. In this experiment, the automatic determination method of determining creatinine was developed by using sequential injection-flow reversal mixing (SI-FRM). The detection of creatinine is based on the formation of a colored product (red-orange) yielded from the reaction of creatinine with picrate at alkaline medium. The absorbance is measured at wavelength of 530 nm.  The formation of creatinine-picrate complex is performed through the segment formation between sample and reagent in the holding coil and then flow reversal process in the mixing coil of SI-FRM. Several parameters affecting to this method are investigated in detail. The results show that the optimum concentrations of picric acid and NaOH are 0.035 M and 3.5%, respectively. Other optimized conditions, such as the flow reversal rate of there 5 µL/s, flow rate of product of 20 µL/s, amount of flow reversal process of four times, and segment amount of three (picrate-creatinine -picrate) with each volume of 100 µL, were obtained. This method is successfully applied to the determination of creatinine in urine with the detection limit of 1.7 µg/g.

Keywords

creatinine; flow reversal mixing; sequential injection; urine

Full Text:

PDF

References

Faria LC & Pasquini C. 1992. Spectrophotometric determination of creatinine by monosegmented continuous-flow analysis. J Autom Chem 14: 97-100.

Garcia CD & Henry CS. 2004. Direct detection of renal function markers using microchip CE with pulsed electrochemical detection. Analyst 129: 579-584.

Harmoinen A, Sillanaukee P & Jokela H. 1991. Determination of creatinine in serum and urine by cation-exchange high-pressure liquid chromatography. Clin Chem 37: 563-565.

Johns BA, Broten T, Stranieri MT, Holahan MA & Cook JJ. 2001. Simple high-performance liquid chromatographic method to analyze serum creatinine has several advantages over the Jaffe´ picric acid reaction as demonstrated with a cimetidine dose response in rhesus monkeys. J Chromatogr B 759: 343-348.

Khan GF & Wernet W. 1997. A highly sensitive amperometric creatinine sensor. Anal Chim Acta 351: 151-158.

Ruzicka J & Marshall GD. 1990. Sequential Injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta 237: 329-343.

Sabarudin A, Lenghor N, Liping Y, Furusho Y & Motomizu S. 2006. Automated online preconcentration system for the determination of trace amounts of lead using Pb-selective resin and inductively coupled plasma–atomic emission spectrometry. Spectrosc Lett 39: 669-682.

Sabarudin A, Lenghor N, Oshima M, Hakim L, Takayanagi T, Gao YH & Motomizu S. 2007. Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry. Talanta 72: 1609-1617.

Staden JF. 1983. Determination of creatinine in urine and serum by flow-injection analysis using the Jaffe reaction. Fresen Z Anal Chem 315: 141-144.

Stefan RI, Bokretsion RG, Staden JF, Aboul-enein HY. 2003. Simultaneous determination of creatine and creatinine using amperometric biosensors. Talanta 60: 1223-1228.

Suzuki Y, Aruga T, Kuwahara H, Kitamura M, Kuwabara T, Kawakubo S & Iwatsuki M. 2004. A simple and portable colorimeter using a red-green-blue light-emitting diode and its application to the on-site determination of nitrite and iron in river-water. Anal Sci 20: 975-977.

Suzuki Y, Ito Y, Fukusawa T, Kawakubo S & Iwatsuki M. 2005. Development of compact photometric titrator and absorptiometric detector for flow-injection analysis using light-emitting diode as light source. Bunseki Kagaku 54: 291-295.

Tsai HA & Syu MJ. 2005. Synthesis of creatinine-imprinted poly (a-cyclodextrin) for the specific binding of creatinine. Biomaterials 26: 2759-2766.

Yoshiwara M, Sakuragawa A & Matsuhashi A. 2005. Determination of creatinine by flow injection analysis using creatinine deiminase. Bunseki Kagaku 54: 1205-1210.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.