RECOVERY LOGAM NIKEL DARI SPENT KATALIS NiO/Al2O3 DENGAN TEKNOLOGI LEACHING MENGGUNAKAN AMONIA-AMONIUM KARBONAT

Y Yuliusman(1),


(1) Departemen Teknik Kimia, Fakultas Teknik, Universitas Indonesia, Indonesia

Abstract

Setiap tahun, limbah katalis NiO/Al2O3 dihasilkan oleh unit Hydrogen Plant UP VI Pertamina Balongan sebesar 100 ton mengandung Ni sekitar 10-25%. Melihat jumlah, potensi dan berbahayanya limbah katalis nikel, perlu dilakukan suatu proses memperoleh nikel dari limbah tersebut melalui proses leaching menggunakan amonia-amonium karbonat. Amonia-amonium karbonat dipilih karena memiliki sifat tidak korosif dan ramah lingkungan. Tujuan penelitian ini adalah untuk mendapatkan kondisi optimum proses leaching. Parameter yang akan diuji untuk proses leaching adalah konsentrasi leaching agent, suhu dan waktu proses, serta untuk proses ektraksi cair-cair adalah konsentrasi ekstraktan dan pH. Setiap variasi proses dilakukan secara sekuensial dengan pengujian AAS. Uji EDX dilakukan untuk membuktikan adanya kandungan nikel dalam limbah katalis NiO/Al2O3, hasilnya menunjukkan bahwa untuk logam nikel berada pada tingkat energi 7,477 dan 0,851 keV.  Hasil analisis AAS untuk konsentrasi logam nikel awal pada katalis adalah sebesar 15,62 %-wt. Dari hasil leaching diketahui bahwa semakin tinggi suhu dan waktu proses, perolehan nikel akan semakin tinggi. Hasil penelitian menunjukkan bahwa kondisi optimum proses leaching adalah pada konsentrasi amonium karbonat 2 M, dengan suhu 60°C selama 5 jam, dengan rasio S/L sebesar 20 g/L, menghasilkan persentase leaching sebesar 29,31 % untuk sistem bejana terbuka.

Annually, NiO/Al2O3 waste catalyst generated by Hydrogen Plant unit Pertamina at UP VI Balongan in the amount of 100 tonnes with Ni content of about 10-25%. Based on the number and dangerous waste nickel catalyst, it is necessary to do a recovery nickel process from that waste with leaching process using ammonia-ammonium carbonate. Ammonia-ammonium carbonate chosen because it has no corrosive properties and environmentally friendly. The purpose of this study is to obtain the optimum leaching conditions. The tested parameters for leaching processes are leaching agent concentration, temperature and processing time, and for liquid-liquid extraction process are the extractant concentration and pH. Each variation process was performed sequentially with AAS testing. EDX test was done to prove the existence of nickel content in the waste catalyst NiO/Al2O3, the results show that nickel at the level of energy 7.477 and 0.851 keV. AAS analysis results for the initial concentration of nickel metal in the catalyst was 15.62% -wt. From the leaching results was known that the higher temperature and processing time, the recovery of nickel will be higher. The results showed that the optimum conditions leaching process was at a concentration of 2 M ammonium carbonate, with  temperature was 60°C for 5 hours, and the ratio S/L was 20 g/L, resulting leaching percentage of 29.31% for open vessel system.

Keywords

waste catalyst NiO/Al2O3; nickel; leaching; ammonia-ammonium carbonate

Full Text:

PDF

References

Abdel-Aal EA, & Rashad MM. 2004. Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid. Hydrometallurgy 74: 189-194.

Agacayak T & Zedef V. 2012. Dissolution kinetics of a lateritic nickel ore in sulphuric acid medium. Acta Montanistica Slovaca 17: 33-41.

Canbazoglu M, Bingol D, & Guler, H. 2005. Ammonia/ammonium carbonate leaching of malachite ores. The Journal of Ore Dressing 7(14): 1-17.

Erasmus M. 2012. Leaching of nickel laterite with a solution of amonia and amonium karbonat utilizing solids liquid separation under pressure. Thesis. Faculty of Engineering at the Stellenbosch University.

Fan X, Xing W, Dong H, Zhao J, Wu Y, Li B, Tong W, & Wu X. 2013. Factors research on the influence of leaching rate of nickel and cobalt from waste superalloys with sulfuric acid. International Journal of Nonferrous Metallurgy, 2: 63-67.

Figueiredo H, Neves IC, Quintelas C, Tavanes T, Taralunga M, Mijoin J & Magnoux P. 2006. Oxidation catalysts prepared from biosorbents supported on zeolite. Applied catalysis B: Environmental. 66: 274-280

Oza R & Patel S. 2012. Recovery of nickel from spent Ni/Al2O3 catalysts using acid leaching, chelation and ultrasonication. Res J Recent Sci 1: 434-443.

Parhi PK, Park KH, & Senanayake G. 2013. A kinetic study on hydrochloric acid leaching of nickel form Ni-Al2O3 spent catalyst. J Ind Eng Chem 19(2): 589-594.

Pusdatin ESDM. 2012. Kajian Supply Demand Mineral. Jakarta: Kementrian Energi dan Sumber Daya Mineral.

Wagner AL, Osborne RS, & Wagner JP. 2003. Prediction of deactivation rates and mechanisms of reforming catalysts. Prep Pap Am Chem Soc Div Fuel Chem 48(2): 748-749.

Weinberg Group. 2007. The Importance of Nickel Compounds: Catalyst. The Weinberg Group LLC: Brussels.

Yang QZ, Qi GJ, Low HC, & Song B. 2010. Sustainable recovery of nickel from spent hydrogenation catalysts : economics, emission and wastes assessment. J Clean Prod 19(4): 365-375.

Yu-Chun Z, Wen-Ning M, Yan L & Qian X. 2010. A green process for recovering nickel from nickeliferous laterite ores. Trans Nonferrous Met Soc China 20: 65-70

Zhang P, Guo Q, Wei G, & Qi T. 2015. Extraction of metals from saprolitic laterite ore through pressure hydrochloric-acid selective leaching. Hydrometallurgy 157: 149-158.

Ziemniak SE & Goyette MA. 2003. Nickel(II) oxide solubility and phase stability in high temperature aqueous solutions. New York: Lockheed Martin Corporation.

Zuniga M, Parada F, & Asselin E. 2010. Leaching of limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy 104: 260-267.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.