SIFAT-SIFAT REPRESENTASI QUIVER SEDERHANA

V Y Kurniawan(1),


(1) Program Studi Matematika, FMIPA, Universitas Sebelas Maret, Indonesia

Abstract

Graf berarah dapat dipandang sebagai pasangan 4-tupel yang terdiri dari dua himpunan serta dua pemetaan dan disebut sebagai quiver . Untuk suatu quiver  dapat didefinisikan representasi quiver . Representasi quiver merupakan penempatan ruang vektor pada setiap titik-titik dari quiver  dan pemetaan linier pada setiap panah-panahnya. Sebuah representasi yang tidak memiliki subrepresentasi sejati selain nol disebut sebagai representasi sederhana. Pada makalah ini, dipelajari sifat-sifat dari suatu representasi quiver sederahana. Selanjutnya sifat-sifat tersebut digunakan untuk menyelidiki syarat perlu dan cukup dari suatu representasi sederhana.

A directed graph can be viewed as a 4-tuple  where  are finite sets of vertices and arrows respectively, and  are two maps from  to . A directed graph is often called a quiver. For a quiver , we can define a quiver representation .    A representation of a quiver  is an assignment of a vector space to each vertex and a linear mapping to each arrow. A representation which has no proper subrepresentation except zero is called a simple representation. In this paper, we study the properties of a simple representation of quiver. These properties will be used to investigate the necessary and sufficient condition of a simple representation of quiver.

Keywords

Morphism; Quiver; Simple Representation; Subrepresentation.

Full Text:

PDF

References

Barot M. 2006. Representations of Quivers, Notes for The ICTP-Conference. Instituto de Matmáticas Universidad Nacional Autónoma de México. Mexico: Ciudad Universitaria.

Brion M. 2008. Representations of Quivers, Notes de l’école d’été “Geometric Methods in Representation Theory”. Grenoble.

David A N. 2015. Cyclic symmetries of An-quiver representations, Advances in Mathematics Vol. 269: 346-363.

Derksen H & Weyman J. 2005. Quiver Representations. Notice of The AMS 52 (2): 200-206.

Krause H. 2007 Representations of Quivers via Reflection Functor. Institut Fur Mathematik, Universitat Paderborn, Paderborn, Germany.

Riedtmann C. 2016 Explicit description of generic representations for quivers of type or , Journal of Algebra 452: 474-486.

Steve YO. 2015. Persistence Theory: From Quiver Representations to Data Analysis (Mathematical Surveis and Monographs, American Mathematical Society, United State of America.

Weist T. 2015. On the recursive construction of indecomposable quiver, Journal of Algebra 443: 49-74.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.