Raw Secondary Metabolites of Trichoderma harzianum T10 in Tapioca Flour Towards Cucumber Damping-off

Loekas Soesanto(1), Hidayatul Ilahiyyah(2), Endang Mugiastuti(3), Abdul Manan(4), Rostaman Rostaman(5),


(1) Universitas Jenderal Soedirman
(2) Universitas Jenderal Soedirman
(3) Universitas Jenderal Soedirman
(4) Universitas Jenderal Soedirman
(5) Universitas Jenderal Soedirman

Abstract

Trichoderma harzianum is effective for controlling soil-borne pathogenic fungi and producing secondary metabolites. When applied in the field, the raw secondary metabolites are quickly decreased directly by sunlight. One strategy to avoid degradation is the use of tapioca fluor liquid formula for biological control agents. This research aimed to obtain the most effective concentration of tapioca flour in development of raw secondary metabolites of Trichoderma harzianum T10, its effect on damping-off and growth of cucumber. This research was carried out at the screen house and the Plant Protection Laboratory, Faculty of Agriculture, Jenderal Soedirman University from September 2017 up to January 2018. The study was conducted in two stages, i.e., in vitro and in planta. The in vitro stage used completely randomized design with five repetitions and five treatments consisted of T. harzianum T10 in Potato Dextrose Broth, and in 0.5; 1; 1.5; and 2% of tapioca flour media. In in planta, randomized block design was used with five repetitions and six treatments consisted of control, T. harzianum T10 in PDB, and in 0.5; 1; 1.5, and 2% of tapioca flour media. Variables observed were density of conidia, disease incubation period, disease incidence, AUDPC, maximum growth potential, germination ability, plant height, canopy fresh weight, root length, and fresh root weight. Result of the research showed that the highest conidial density (1.23 x 107 conidia mL-1) of T. harzianum T10 was found in 2% tapioca flour with an increase of 63.28% compared to the PDB. The tapioca flour of 1 and 2%, and PDB could suppress the disease incidence by 81.82%. The lowest AUDPC was at 2% tapioca flour. The raw secondary metabolites could not delay the incubation period significantly and increase cucumber plant growth. The novelty is the use of antagonistic fungi in terms of raw secondary metabolites and the discovery of tapioca flour with the right concentration to produce high conidia density and high raw secondary metabolites. The benefits are to find other cheaper ingredients in promoting antagonistic fungal growth and the use of antagonistic fungal bioactive compounds to control plant pathogen

Keywords

cucumber, damping-off, raw secondary metabolites, tapioca flour, Trichoderma harzianum T10

Full Text:

PDF

References

Akagi, A., Jiang, C., & Takatsuji, H. (2015). Magnaporthe oryzae inoculation of rice seedlings by spraying with a spore suspension. Bio-protocol, 5(11), e1486.

Aljarah, N. 2017. The activity of Metarhizium sp. to control Pythium aphanidermatum causal agent of cucumber damping off under greenhouse conditions. International Journal of Science and Research (IJSR) 6(8): 1098-1101.

Al-Taweil, H.I., Osman, M.B., Aidil, A.H., & Wan-Yussof, W.M. (2009). Optimizing of Trichoderma viride cultivation in submerged state fermentation. Am. J. Appl. Sci. 6: 1277-1281.

Bae, S.-J., Park, Y.-H., Bae, H.-J., Jeon, J., & Bae, H. (2017). Molecular identification, enzyme assay, and metabolic profiling of Trichoderma spp. Journal of Microbiology and Biotechnology 27(6): 1157-1162.

Borin, G.P., Camila Cristina Sanchez, C.C., de Souza, A.P., de Santana, E.S., de Souza, A.T., Leme, A.F.P., Squina, F.M., Buckeridge, M., Goldman, G.H., & de Castro Oliveira, J.V. (2015). Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS ONE 10(6): e0129275.

Bouziane, Z., Dehimet, L., & Chaouch, N.K. (2016). Inhibitory activity of Trichoderma viride against Phytophthora infestans that affects the Spunta potato (Solanum tuberosum L.) variety. African Journal of Microbiology Research 10(29): 1121-1127.

Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T., & Samuels, G.J. (2015). Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107(3): 558–590.

Damiri, N., Mulawarman, & Mutiara, M. (2014). Effect of temperature and storage on effectiveness of Trichoderma viride as biocontrol agents of Rigidoporus microporus, pathogen of white root on rubber. AGRIVITA 36 (2): 169–173.

Ezeonu, C.S., Umaru, I.J., Sindama, A., & Onwurah, I.N.E. (2016). Estimation of total carbohydrate and sugar contents of fungi treated rice husks. FUW Trends in Science & Technology Journal 1(1): 45-49.

Fayadh, M.A. & Aledani, M.A. (2011). Effect of some microelements and biological control agents in control of tomato seedling damping-off caused by Rhizoctonia solani Kuhn. Basra J. Agric. Sci. 24(1): 53-68.

Finch-Savage, W.E. & Bassel, G.W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany 67(3): 567–591. DOI:10.1093/jxb/erv490.

Ghazanfar, M.U., Raza, M., Raza, W., & Qamar, M.I. (2018). Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Protection, 02(03): 109-135.

Gilbert, G.S. & Parker, I.M. (2010). Rapid evolution in a plant-pathogen interaction and the consequences for introduced host species. Evol. Appl. 3(2): 144–156.

Gusnawaty, H.S., Taufik, M., Syair, & Esmin. (2014). Efektifitas Trichoderma indigenus hasil perbanyakan pada berbagai media dalam mengendalikan penyakit layu Fusarium dan meningkatkan pertumbuhan serta produksi tanaman tomat (Lycopersicum esculentum). Jurnal Agriplus 24 (2): 99-110.

Han, J.S., Cheng, J.H., Yoon, T.M., Song, J., Rajkarnikar, A., Kim, W.G., Yoo, I.D., Yang, Y.Y., & Suh, J.W. (2012). Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of Applied Microbiology 99: 213–221.

Hanudin, Nawangsih, A.A., Marwoto, B., & Tjahyono, B. (2013). Komposisi formula biobakterisida berbahan aktif rizobacteri untuk pengendalian penyakit busuk lunak pada anggrek Phalaenopsis. Jurnal Hortikultura 23 (3): 224-254.

Heydari, A. & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences 10(4): 273-290.

Keswani, C., Singh, H.B., Hermosa, R., García-Estrada, C., Caradus, J., He, Y.-W., Mezaache-Aichour, S., Glare, T.R., Borriss, R., Vinale, F., & Sansinenea, E. (2019). Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology 103: 9287–9303.

Khan, R.A.A., Najeeb, S., Hussain, S., Xie, B., & Li, Y. (2020). Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 8(817).

Köhl, J., Kolnaar, R., & Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci., 19 July 2019

Lamichhane, J.R., Dürr, C., Schwanck, A.A., Robin, M.-H., Sarthou, J.-P., Cellier, V., Messéan, A., & Aubertot, J.-N. (2017). Integrated management of damping-off diseases. A review. Agron. Sustain. Dev. 37(10): 1-25.

Ling, A.S.C., Kamil, M.J.A., Chong, K.P., & Ho, C.M. (2017). Assessing the cocoa genotypes for resistance to black pod using the area under the disease-progress curve (AUDPC). Bulgarian Journal of Agricultural Science 23(6): 972–997.

Marik, T., Tyagi, C., Balázs, D., Urbán, P., Szepesi, A., Bakacsy, L., Endre, G., Rakk, D., Szekeres, A., Andersson, M.A., Salonen, H., Druzhinina, I.S., Vágvölgyi, C., & Kredics, L. (2019). Structural diversity and bioactivities of peptaibol compounds from the Longibrachiatum clade of the filamentous fungal genus Trichoderma. Front. Microbiol. 10: 1434.

Mishra, P.K. & Khan, F.N. (2015). Effect of different growth media and physical factors on biomass production of Trichoderma viride. People’s Journal of Scientific Research 8(2): 11-16.

Mukherjee. P.K., Horwitz, B.A., & Kenerley, C.M. (2012). Secondary metabolism in Trichoderma– a genomic perspective. Microbiology 158: 35–45.

Mukherjee, P.K., Horwitz, B.A., Herrera-Estrella, A., Schmoll, M., & Kenerley, C.M.. (2013). Trichoderma research in the genome era. Annual Review of Phytopathology 51: 105–29.

Munir, S., Jamal, Q., Bano, K., Sherwani, S.K., Bokhari, T.Z., Khan, T.A., Khan, R.A., Jabbar, A., & Anees, M. (2013). Biocontrol ability of Trichoderma. International Journal of Agriculture and Crop Sciences 6(18): 1246-1252.

Mutawila, C., Vinale, F., Halleen, F., Lorito, M., & Mostert, L. (2015). Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathology 65(1): 104-113.

Muthu, K.A. (2016). Occurrence and distribution of indigenous isolates of Pythium species in northern India. Advances in Plants & Agriculture Research 4(4): 319‒327.

Muturi, E.J., Donthu, R.K., Fields, C.J., Moise, I.K., & Kim, C.-H. (2017). Effect of pesticides on microbial communities in container aquatic habitats. Sci Rep. 7: 44565.

Noordzij, M., Dekker, F.W., Zoccali, C., & Jager, K.J. (2010). Measures of disease frequency: Prevalence and incidence. Nephron. Clin. Pract. 115:c17–c.

Panahian, G., Rahnama, K., & Jafari, M. (2012). Mass production of Trichoderma spp. and application. International Research Journal of Applied and Basic Sciences 3 (2): 292–298. .

Patel, R. & Patel, D. (2014). Screening of Trichoderma and antagonistic analysis of a potential strain of Trichoderma for production of a bioformulation. International Journal of Scientific and Research Publications 4 (10): 1–6.

Patil, A.D. & Rathore, M.S. (2018). Isolation of pythium species from damping off affected onion rhizospheric soil, using baiting technique. Journal of Pharmacognosy and Phytochemistry 7(4): 12-13.

Patil, V.M., Patole, K.R., Paprikar, M.S., & Rajput, J.C. (2018). Effects of glucose base formulation of Trichoderma viride on seed germination and seedling parameters of tomato (Solanum lycopersicum). Indian Journal of Plant Sciences 7(2): 6-11.

Pathma, J., Rahul, G.R., Kamaraj, K.R., Subashri, R., & Sakthivel, N. (2011). Secondary metabolite production by bacterial antagonists. Journal of Biological Control 25(3): 165-181. DOI: 10.18311/jbc/2011/3716.

Rahnama, K. (2012). Mass production of Trichoderma spp and application. International Research Journal of Applied and Basic Sciences 3(2): 292-298.

Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research 183: 26-41.

Rifqifauzi, A. (2014). Pengaruh penyiraman dan dosis pemupukan terhadap pertumbuhan kangkung (Ipomoea reptans) pada komposisi media tanam tanah+pasir. Agrotrop 4 (2): 104 -111.

Rodriguez-Moreno, L., Ebert, M.K., Bolton, M.D., & Thomma, B.P.H.J. (2017). Tools of the crook infection strategies of fungal plant pathogens. The Plant Journal 93(4): 664-674.

Rostami, F., Alaei, H., Karimi, H.R., & Abad, A.B. (2015). Controlling the root and stem rot of cucumber, caused by Pythium aphanidermatum, using resistance cultivars and grafting onto the cucurbit rootstocks. Azarian Journal of Agriculture 2(1): 19-24.

Rubeena, M., Neethu, K., Sajith, S., Sreedevi, S., Priji, P., Unni, K.N., Sarath Josh, M.K., Jisha, V.N., Pradeep, S., & Benjamin, S. (2013). Lignocellulolytic activities of a novel strain of Trichoderma harzianum. Advances in Bioscience and Biotechnology 4(2). Article ID:28417,8 pages.

Shofiyani, A. & Budi, G.P. (2014). Development of Fusarim disease control technology with biological agent in Mas cultivar banana in land infected. AGRITECH 16 (2): 157-173.

Singh, M.C., Singh, J.P., Pandey, S.K., Mahay, D., & Shrivastva, V. (2017). Factors affecting the performance of greenhouse cucumber cultivation-A review. International Journal of Current Microbiology and Applied Sciences 6(10): 2304-2323.

Soekarno, B.P.W., Surono, & Susanti. (2014). Formula pelet berbahan aktif Trichoderma sp. dan aplikasinya terhadap penyakit rebah kecambah pada tanaman mentimun. Jurnal Fitopatologi Indonesia 10 (5): 153–159.

Soesanto, L., Kustam, and E. Mugiastuti. 2019. Application of Bio P60 and Bio T10 in combination against phytophthora wilt of papaya. Biosaintifika: Journal of Biology & Biology Education 11(3): 339-344.

Soesanto, L., Mugiastuti, E., Rahayuniati, R.F., & Dewi, R.S. (2013). Uji kesesuaian empat isolat Trichoderma spp. dan daya hambat in vitro terhadap beberapa patogen tanaman. Jurnal HPT Tropika 13(2): 117–123.

Sriram, S., Roopa, K.P., & Savitha, M.J. (2011). Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium. Crop Protection 30: 1334-1339.

Sriyanto, Astuti, D.P., & Sujalu, A.P. (2015). Pengaruh dosis pupuk kandang sapi terhadap pertumbuhan dan hasil tanaman terung ungu dan terung hijau (Solanum melongena L.). Jurnal AGRIFOR 14 (1): 39-44.

Suffert, F. & Guibert, M. (2007). The ecology of a Pythium community in relation to the epidemiology of carrot cavity spot. Applied Soil Ecology 35: 488-501.

Sutton, J.C., Sopher, C.R., Owen-Going, T.N., Liu, W., Grodzinski, B., Hal, J.C., & Benchimol, R.L. (2006). Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica 32(4).

Tola, F. Hamzah, Dahlan, dan Kaharuddin. 2007. Pengaruh penggunaan dosis pupuk bokashi kotoran sapi terhadap pertumbuhan dan produksi tanaman jagung. Jurnal Agrisistem 3 (1): 1-8.

Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Ruocco, M., Woo, S., & Lorito, M. (2012). Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications 7(11): 1545 – 1550.

Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Woo, S.L., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Ruocco, M., Lanzuise, S., Manganiello, G., & Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8(Suppl-1, M5): 127-139.

Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., Ren, J., & Chen, J. (2017). Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One 12(6): e0179957.

Yassin, M.A., El-Samawaty, A.E., Moslem, M.A., & Sayed, R.M. (2016). Evaluation of potassium and sodium silicates against Fusarium spp. causing damping-off disease of cotton seedling. Fresenius Environmental Bulletin 25(4): 1117-1124.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.