Potential of Red Okra Extract (Abelmoschus esculentus L. Moench) to Restore Kidney Damage due to Sodium Nitrite

Sri Puji Astuti Wahyuningsih(1), Amalia Fachrisa(2), Nabilatun Nisa’(3), Baskara Wiku Adi Kusuma(4), Nadia Shoukat(5), Rasyidah Fauzia Ahmar(6), Na'ilah Insani Alifiyah(7),


(1) Department of Biology, Faculty of Science and Technology, Universitas Airlangga
(2) Department of Biology, Faculty of Science and Technology, Universitas Airlangga
(3) Department of Biology, Faculty of Science and Technology, Universitas Airlangga
(4) Faculty of Medicine, Universitas Airlangga
(5) Department of Biology, Faculty of Science and Technology, Universitas Airlangga
(6) Department of Biology, Faculty of Science and Technology, Universitas Airlangga
(7) Department of Biology, Faculty of Science and Technology, Universitas Airlangga

Abstract

Sodium nitrite (NaNO2) found in vegetables, drinking water, and cured meats, can damage tissue because it is an oxidant. Plant phytochemicals such as quercetin are antioxidants. This study aimed to determine the potential of red okra pods ethanol extract (ROE) to repair kidney damage in mice (Mus musculus) induced by NaNO2. The red okra pods were extracted three times with saturated ethanol. The experiment used 36 male BALB/c mice aged 6-8 weeks and body weight of about 28 g. There are six research groups, namely, normal control, negative control (exposure to NaNO2 50 mg/kg BW), treatment of exposure to NaNO2 and administration of ROE at doses of 25, 50, 75, and 100 mg/kg BW. Sodium nitrite and ROE were given daily for 23 days by gavage. On day 24, the serum was isolated. Blood urea nitrogen (BUN) and creatinine (Cre) levels are measured to assess kidney function, as well as measuring the oxidant malondialdehyde (MDA) and the antioxidant enzyme of superoxide dismutase (SOD). The kidneys were made histological preparations and analyzed on the proximal convoluted tubule (PCT).  All data were statistically analyzed (α=0.05). This study indicated that the administration of ROE at a 100 mg/kg BW dose is the most optimal in repairing damage to the PCT with increased normal cells and reduced necrosis. Besides, it degraded BUN, Cre, and MDA levels in the serum of mice exposed to NaNO2 compared to the other treatments. All doses of ROE promoted the SOD level. ROE restore kidney tissue, especially on PCT to normal. Kidney damage due to exposure to NaNO2 preservatives can be reduced by administering ROE. ROE prevents kidney damage through an increase in antioxidant enzymes. ROE can be used as a food ingredient as a source of antioxidants, thereby reducing the impact of oxidant compounds.

Keywords

iochemical evaluation; proximal convoluted tubule; red okra; sodium nitrite

Full Text:

PDF

References

Anjani, P. P., Damayanthi, E., Rimbawan, R., & Handharyani, E. (2018). Antidiabetic potential of purple okra (Abelmoschus esculentus L.) extract in streptozotocin-induced diabetic rats. IOP Conference Series: Earth and Environmental Science, 196(2018), 012038.

Ansari, F. A., Ali, S. N., Arif, H., Khan, A. A., & Mahmood, R. (2017). Acute-oral dose of sodium nitrite induces redox imbalance, DNA damage, metabolic, and histological changes in rat intestine. PLoS One, 12(4), e0175196.

Baek, J. H., Zhang, X., Williams, M. C., Hicks, W., Buehler, P. W., & D’Agnillo, F. (2015). Sodium nitrite potentiates renal oxidative stress and injury in hemoglobin exposed guinea pigs. Toxicology, 333, 89-99.

Bijanti., M., Gundul A. Y., Retno S. W., & Budi U. (2010). Patologi klinik veteriner Edisi Pertama. Surabaya: Pusat Penerbitan dan Percetakan Unair.

Fitmawati, Saputra, A., Titrawani, Juliantari, E., & Dewi, A. P. K. (2019). Histological study of white rats (Rattus norvegicus) kidney following the consumption of obat pahit from Riau archipelago. Biosaintifika, 11(2), 211-217.

Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology, 5(2), 47-58.

Galleano, M., Verstraeten, S. V., Oteiza, P. I., & Fraga, C. G. (2010). Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 501(1), 23–30.

Gounden, V., Bhatt, H., & Jialal, I. (2020). Renal Function Tests. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK507821/

Guzel, S., Sahinogullari, Z. U., Canacankatan, N., Antmen, S. E., Kibar, D., & Coskun Yilmaz, B. (2019). Potential renoprotective effects of silymarin against vancomycin-induced nephrotoxicity in rats. Drug and Chemical Toxicology, 43(6), 630-636.

Husen S. A., Wahyuningsih, S. P. A., Ansori, A. N. M., Hayaza S., Susilo, R. J. K., Darmanto, W., & Winarni, D (2019). The effect of okra (Abelmoschus esculentus Moench) pods extract on malondialdehyde and cholesterol level in STZ-induced diabetic mice. Ecology, Environment, and Conservation, 25(4), 3703-3708.

Irshad, M., Debnath, B., Mitra, S., Arafat, Y., Li, M., Sun, Y., & Qiu, D. (2018). Accumulation of anthocyanin in callus cultures of red-pod okra [Abelmoschus esculentus (L.) Hongjiao] in response to light and nitrogen levels. Plant Cell, Tissue and Organ Culture, 134(1), 29–39.

Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal. Article ID 162750.

Kumar, V., Abbas, A. K. & Aster, J. C. (2015). Robbins & cotran pathologic basis of disease. 9th Edition, Elsevier, Philadelphia.

Lee, S., Lee, H., Kim, S., Lee, J., Ha, J., Choi, Y., Oh, H., Choi K., & Yoon, Y. (2018). Microbiological safety of processed meat products formulated with low nitrite concentration-a review Asian-Australasian Journal of Animal Sciences, 31(8), 1073-1077.

Liaudet, L., Rosenblatt-Velin, N., & Pacher, P. (2013). Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Current Vascular Pharmacology, 11(2), 196-207.

Luo, Y., Hong-Xin, C., An, J., Shan-Shan, J. & Ke, Y. (2018) The protective effect of the total flavonoids of Abelmoschus esculentus L. flowers on transient cerebral ischemia-reperfusion injury is due to activation of the Nrf2-ARE pathway. Oxidative Medicine and Cellular Longevity, Article ID 8987173.

Miller, M. A. & James, F. Z. (2017). Mechanisms and morphology of cellular injury, adaptation, and death. Pathologic Basis of Veterinary Disease, 2-43, e19.

Muriel, P., & Gordillo, K. R. (2016). Role of oxidative stress in liver health and disease. Oxidative Medicine and Cellular Longevity, Article ID 9037051.

Nur, H. H., & Suryani, D. (2011). Analisis kandungan nitrit dalam sosis pada distributor sosis di kota Yogyakarta tahun 2011. Jurnal Kesehatan Masyarakat (Journal of Public Health), 6(1), 1-74.

Özen, H., Kamber, U., Karaman, M., Gül, S., Atakişi, E., Özcan, K., & Atakişi, O. (2014). Histopathologic, biochemical, and genotoxic investigations on chronic sodium nitrite toxicity in mice. Experimental and Toxicologic Pathology, 66(8), 367–375.

Petropoulos S., Di Gioia, F., & Ntatsi, G. (2017). Vegetable organosulfur compounds and their health-promoting effects. Current Pharmaceutical Design, 23, 2850–2875.

Post, A., Tsikas, D., & Bakke, S. J. L. (2019). Creatine is a conditionally essential nutrient in chronic kidney disease: a hypothesis and narrative literature review. Nutrients 11(5), 1044.

Salazar, J. H. (2014). Overview of urea and creatinine. Winter, 45(1), e19–e20.

Seki, M, Nakayama, M., Sakoh, T., Yoshitomi, R., Fukui, A., Katafuchi, E., Tsuda, S., Nakano, T., Tsuruya, K., & Kitazono, T. (2019). Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3–5 chronic kidney disease: a prospective observational study. BMC Nephrology, 20(115), 1-10.

Sherif, I. O., & Al-Gayyar, M. M. (2013). Antioxidant, anti-inflammatory, and hepatoprotective effects of silymarin on hepatic dysfunction induced by sodium nitrite. European Cytokine Network, 24(3), 114-1.

Susatyo, P., Rifanda, A. A., Simanjuntak, S. B. I., & Chasanah, T. (2018). Antioxidant effect of Chlorella vulgaris on Wistar rat kidney induced by CCl4: a histopathological review. Biosaintifika, 10(1), 169-175.

Tongjaroenbuangam, W., Ruksee, N., Chantiratikul, P., Pakdeenarong, N., Kongbuntad, W., & Govitrapong, P. (2011). Neuroprotective effects of quercetin, rutin, and okra (Abelmoschus esculentus Linn.) in dexamethasone-treated mice. Neurochemistry International, 59(5), 677–685.

Wahyuningsih, S. P. A., Pramudya, M., Putri, I. P., Savira, N. I. I., Winarni, D., Suhargo, L., Darmanto, W. (2017). Okra polysaccharides improve spleen weight and B-lymphocytes proliferation in mice infected by Staphylococcus aureus. Biosaintifika, 9(3), 460-465.

Wahyuningsih, S. P. A., Savira, N. I. I., Anggraini, D. W., Winarni, D., Suhargo, L., Kusuma, B. W. A., Nindyasari, F., Setianingsih, N., & Mwendolwa, A. A. (2020). Antioxidant and nephroprotective effects of okra pods extract (Abelmoschus esculentus L.) against lead acetate-induced toxicity in mice. Scientifica, Article ID 4237205.

Wójciak, K. M., Stasiak, D. M., & Kęska, P. (2019). The influence of different levels of sodium nitrite on the safety, oxidative stability, and color of minced roasted beef. Sustainability, 11(14), 3795.

Xia, F., Zhong Y., Li, M., Chang, Q, Liao, Y., Liu, X., & Pan, R. (2015). Antioxidant and anti-fatigue constituents of okra. Nutrients, 7(10), 8846–8858.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.