Antidiabetic Potential of Methanol Extract of Flamboyant (Delonix regia) Flowers

Kartini Eriani(1), Uswatun Hasanah(2), Rizky Fitriana(3), Widya Sari(4), Yunita Yunita(5), Al Azhar(6),


(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Indonesia
(4) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Indonesia
(5) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Indonesia
(6) Faculty of Veterinary Medicine, Syiah Kuala University

Abstract

Providing scientific evidences for the medicinal benefits and possible toxic effects of the flamboyant flowers (Delonix regia (Bojer ex Hook.) Raf.) are very important to implementing the medicinal plant in this modern era. This study aimed to investigate antidiabetic potential of methanol extract of flamboyant flowers using a completely random design. Twenty-four male rats were randomly divided into 6 treatment groups with 4 replications: healthy rats (normal control, P1), diabetic rats treated with flamboyant flower extract of 0 (negative control, P2), 100 (P3), 200 (P4), and 400 mg/kg BW (P5), and rats which were induced by 0.45 mg/kg BW of Glibenclamide (positive control, P6). Diabetic condition was achieved by a single injection of alloxan 150 mg/kg BW. Treatments were given once a day for 14 days. On day 0, 3 and 18 blood samples were withdrawn from rats’ orbital vein for glucose measurement. All rats were sacrificed for liver, gastrocnemius muscles and pancreatic tissues collection. The liver and gastrocnemius muscle were subjected for glycogen measurement whereas pancreatic tissues were processed for histological examinations. Data was analyzed by ANOVA and followed by Duncan test. The results showed that flamboyant flowers extracts significantly (p<0.05) reduced blood glucose as well as degeneration and necrosis of pancreatic β cells. Optimal dose to decrease blood glucose and pancreatic cell degeneration was 200 mg/kg BW; whereas optimum dose to decrease pancreatic cell necrosis was 400 mg/kg BW. In conclusion, flamboyant flower extract can reduce blood glucose in rats. This is the first that shows antidiabetic potential of local Flamboyant flower extracts along its toxicity effect to pancreatic tissues. These information could become a basic consideration for the use of the plant extracts as a candidate to cure patients with diabetic problems.

Keywords

blood glucose, Delonix regia flowers, diabetes mellitus, glycogen, histopathology

Full Text:

PDF

References

Adje, F. A., Lozano, Y. F. & Gerneveb, C. L. (2012). Phenolic acid and flavonol water extracts of Delonix regia red flowers. Industrial Crops and Products, 37(4), 303-310.

Al-Ishaq, K. R., Abotaleb, M. Kubatka, P., Kajo, K. & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430 doi: 10.3390/biom9090430

Alethea, T. & Ramadhian, M. R. (2015). Antidiabetic effect of Moringa leaf. Med. J. Lampung University, 4(9), 118-22

Akrom, Harjanti, P. D. & Armansyah, T. (2014). Hypoglicemia effect of sweet potatos (Ipomoea batatas P) root ethanolic extract in aloxan induced Swiss mice. Pharmaçiana, 1, 65-76

Bahadoran, Z., Mirmiran, P. & Azizi, F. (2013). Dietary polyphenols as potential nutraceuticals inmanagement of diabetes. J Diab Metabolic Disorders, 12(43), 1-9.

Baskin, D. G. (2015). A historical perspective on the identification of cell types in pancreatic islets of Langerhans by staining and histochemical techniques. J Histochem Cytochem, 63(8), 543-558.

Brahmachari, G. (2011). Bio-flavonoids with promising antidiabetic potentials: A critical survey. J Research Signpost, 187-212.

Brennand, K., Huangfu, D. & Melton, D. (2007). All beta cells contribute equally to islet growth and maintenance. Plos Biology. 5(7), 163.

Cermak, R., Landgraf, S. & Wolffram, S. (2004). Quercetin glucosides inhibit glucose uptake into brush-border membrane vesicles of porcine jejunum. British J. Nutr, 91, 849-855

Chaiyasut, C., Kusirisin, W., Lailerd, N., Lertrakarnoon, P., Suttajit, M. & Srichairatanakool, S. (2011). Effect of phenolic compounds of fermented Thai indigenous plants on oxidative stress in strepzotocine-induced diabetic rats. Research Article. 15(2), 118-23.

Chaturvedi, D., Suhane, N., Singh, D., Chaturvedi, N. & Mishra, A. (2014). Anti-diabetic potential of Delonix regia. Int Res J Pharm, 5(12), 884-886. DOI: 10.7897/2230-8407.0512179

Chen, C., Cohrs, C. M., C. M., Stertmann, J., Bozsak, R. & Speier, S. (2017). Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab, 6(9), 943-957

Dheer, R. & Bhatnagar, P. A. (2010). Study of the antidiabetic activity of Barleria prionitis Linn. Indian J of Pharmacol, 42(2), 70-3.

Eleazu, C.O., Eleazu, K.C., Chukwuma, S. C., Okoronkwo, J., Emelike, C. U. (2014). Effect of livingstone potato (Plectranthus esculenthus N.E.Br) on hyperglycemia, antioxidant activity and lipid metabolism of streptozotocin induced diabetic rats. Toxicology Reports, 1, 674-81.

Engler, B. M., Engler, M. M., Chen, Y. C., Malloy, J. M., Browne, A., Elisa Y Chiu, Y. E., Kwak, H-K, Milbury, P., Paul, M. S., Blumberg, J. & Mietus-Snyder, L. M. (2004). Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 23(3),197-204. doi: 10.1080/07315724.2004.10719361.

Erejuwa, O. O., Sulaiman, S. A., Wahab, M. S A., Salam, S. K. N., Salleh, M. S. M., & Gurtu, S. (2011). Comparison of anti-diabetic effects of honey, glibenclamide, metformin and their combination in the streptozotocin induced diabetic rat. Int J Mol Sci. 12(1), 829–843.

Eriani, K. Suryani, I. Azhar, A. Nursanty, R, Ichsan, I, & Boediono, A. (2018). Neurogenic differentiation of bone marrow mesenchymal-like stem cell induced by Delonix regia flowers extract. Biosaintifika 10(2), 417-423.

Eriani, K. Anggraini, D. Bintoro, Y. Ichsan, I. Azhar, A & Mariya, S. (2020). Alkaline phosphatase expression obtained from mice mesenchymal stem cells induced by flamboyant flower (Delonix regia) extract. Biosaintifika, 12(3), 385-392

Erwin, Etriwati, Muttaqien, Pangestiningsih, T. W. & Widyarini, S. (2013). Insulin expression in the pancreas of streptozotocin induced mice (Mus musculus). Jurnal Kedokteran Hewan, 7(1), 97-100.

Fang, X., Gao, Y., Yang, H.-Y., Lang S.-M., Wang, Q.-J., Yu, B.-Y. & Zhu, D.-N. (2008). Alleviating effects of active fraction of Euonymus alatus abundant in flavonoids on diabetic mice. The Am. J. Chinese Med. 36(1), 125-40. doi:10.1142/S0192415X08005643

Fiedor, J. & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466-488

Guz, Y., Nasir, I & Teitelman, G. (2001). Regeneration of pancreatic cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology, 142(11), 4956-4968.

Harborne, J. B., Williams, C. A. (2000). Advances in flavonoid research since 1992, Department of Botany, School of Plant Sciences, The University of Reading, Reading RG6 6AS, UK.

Hendrawati A. (2017). Protective effect of quercetin and omega-3 combination on pancreatic β cells of rats with type 2 diabetes mellitus. Pharmaciana, 7(1), 1-8.

Hess, D., Li, L. Martin, M., Sakano, S., Hill, D., Strutt, B., Thyssen, S., Gray A. D. & Bhatia, M. (2003). Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol, 21(7), 763-70. doi: 10.1038/nbt841. Epub 2003 Jun 22.

Hue S. M., Boyce, A. N. & Somasundram, C. (2012). Antioxidant activity, phenolic and flavonoid contents in the leaves of different varieties of sweet potato (Ipomoea batatas), Australian J Crop Sci, 6(3), 375-80.

Hussain, S. A., Ahmed, Z. A., Mahwi, T. O. & Aziz, T. A. (2012). Effect of quercetin on postprandial glucose excursion after mono- and disaccharides challenges in normal and diabetic rats. J Diabetes Mellitus, 2, 82-87.

International Diabetes Federation. (2015) IDF Diabetes Atlas. 7th Ed. http://www.dmthai.org/sites/default/files/idf_atlas_2015_uk_0.pdf. Accessed on February 25th, 2017.

Ittagi, S., Patel, H., Patel, J., Riyazunnisa. (2011). Quantification of Total Phenol and Flavonoid Content of Delonix regia Flowers. Int. J Chem Tech Res, 3(1), 280-283

Jahan, I., Rahman M. S., Rahman, M. Z., Kaisar, M. A., Islam, M. S., Wahab, A. & Rashid, M. A. (2010). Chemical and biological investigations of Delonix regia (Bojer ex Hook.) Raf. Acta Pharm, 60, 207-215. DOI: 10.2478/v10007-010-0018-7

Kannappan S. & Anuradha C. V. (2009). Insulin sensitizing actions of fenugreek seed polyphenols, quercetin and metformin in a rat model. Indian J Med Res, 129, 401-408.

King, A. J. F. (2012). The use of animal models in diabetes research. Br J Pharmacol, 166(3), 877-894

Lammert E., Cleaver, O. & Melton, D. (2001). Induction of pancreatic differentiation by signals from blood vessels. Science, 294, 564-567.

Lu, W., Shi, Y., Wang, R., Su, D. Tang, M., Liu, Y. & Li, Z. (2021). Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int J Mol Sci, 22, 4945. https://doi.org/10.3390/ijms22094945.

Mordi, C. R., Ademosun, T. A., Ajanaku, O. C., Olanrewaju, O. I. & Walton, C. J. (2020). Free radical mediated oxidative degradation of carotenes and xanthophylls. Molecules 25(5), 1038; https://doi.org/10.3390/molecules25051038

Noipha, K. & Ninla-Aesong, P. (2018). Antidiabetic activity of Zingiber officinale roscoe rhizome extract: an in vitro study. Hayati J Biosci, 24(4), 161-169

Nurhidajah, N., Astuti, M., Sardjono, S. & Murdiati, A. (2017). Blood antioxidant profile of diabetes rats feed with red rice enriched with kappa-carrageenan and anthocyanin extracts. Agritech, 37(1), 81-7.

Oguntibeju, O. O. (2019). Medicinal plants and their effects on diabetic wound healing. Vet. World, 12(5), 653-663.

Pandarekandy, S. T., Sreejesh, P. G., B. S. Thampi, B. S. H, & Sreekumaran, E. (2017). Hypoglycaemic effect of glibenclamide: A critical study on the basis of creatinine and lipid peroxidation status of streptozotocin-induced diabetic rat. Indian J Pharm Sci, 79(5), 768-777

Pasaribu, R. Hutahaean, S. & Ilyas, S. (2015). Anti-hyperglycemic testing of ethanol extract of moon flower (Tithonia diversifolia) leaves in the alloxan induced diabetic mice (Mus musculus). J Biosains, 1(2), 36-43.

Peng, J., Li, Q, Li, K., Zhu, L., Lin, X., Lin, X., Shen, O., Li, G. & Xie, X. (2017). Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of Akt signaling and SIRT. J Diabet Res, 2017, 3417306. doi: 10.1155/2017/3417306.

Rahman, M. M., Hasan, M. N., Das, A. K., Hossain, M. T., Jahan, R. & Khatun, M. A. (2011). Effect of Delonix regia leaf extract on glucose tolerance in glucose induced hyperglycemic mice. Afr J Trad Complement Altern Med, 8(1), 34-36.

Rizky, B. A. (2015). White dragon fruit (Hylocereus undatus) potential as diabetes mellitus treatment. Review article. J Majority, 4(1), 69-72.

Shanmuka, I., Patel, I., Patel, H. & Riyazunnisa, J. (2011). Quantification of total phenol and flavonoid content of Delonix regia flowers. Int J Chem Tech Res, 3(1), 280-300.

Shiramane, R.S., Biradar, K. V., Chivde, B. V., Shambhulingayya, H. M. & Goud, V. (2011). In-vivo antidiarrhoeal activity of ethanolic extract of Delonix regia flowers in experimental induced diarrhea in Wistar albino rats. Int J Res Phar Chem, 1(3), 442-447.

Suarsana, I. N., Priosoeryanto, B.P., Bintang, M., & Wresdiyati, T. (2010). Blood glucose profile and ultrastructure of pancreatic β cells of alloxan induced rats. J Ilmu Ternak dan Veteriner, 15(2), 118-23.

Veigas, J. M., Divya, P. & Neelwarne, B. (2012). Identification of previously unreported pigments among carotenoids and anthocyanins in floral petals of Delonix regia (Hook.) Raf. Food Res Int, 47, 116-23.

Wang, L. S., Lee, C. T., Su, W. L., Huang, S. C. & Wang, S. C. (2016). Delonix regia leaf extract (DRLE): A potential therapeutic agent for cardioprotection. PLoS ONE, 11(12), 1-17.

Wei, X., Yang, X., Han, Z., Qu, F., Shao, L, & Shi, Y. (2013). Mesenchymal stem cells: A new trend for cell therapy. Pharmacologica, 34, 747-54.

Williams, A. R. & Hare, J. H. (2011). Mesenchymal stem cells biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Res, 109, 907-9.

Winarsi H., Sasongko, N. D., Purwanto, A. & Nuraeni, I. (2013). Cardamom extract leaves decreased atherogenic indexes and blood glucose level of diabetic rats alloxans-induced. Agritech, 33(3), 273-280.

World Health Organization (WHO). (2016). Global Report on Diabetes. World Health Organization Department of Non-communicable Disease Suveillance, Geneva. 6-7.

Yeon, J.-Y., Bae, J. Y., Kim, E.-Y. & Lee, E.-J. (2015). Association between flavonoid intake and diabetes risk among the Koreans. Clinica Chimica Acta, 439, 225-30. DOI:10.1016/j.cca.2014.10.042.

Youl, E., Bardy, G., Magous, R., Cros, G., Sejalon, F., Virsolvy, A., Richard, S., Quignard, J. F., Gross, R., Petit, P, Bataille, D & Oiry, C. (2010). Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. British J Pharm, 161, 799-814.

Zhou, Q. & Melton, D. A. (2018). Pancreas regeneration. Nature, 557(7705), 351-358

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.