Trichoderma hamatum derived from coffee plant ( Coffea canephora ) rhizosphere inhibit Candida albicans Growth

Yuyun Nisaul Khairillah(1), Nampiah Sukarno(2), Irmanida Batubara(3),


(1) Biology Department, Faculty of Mathematics and Natural Sciences, IPB University
(2) Biology Department, Faculty of Mathematics and Natural Sciences, IPB University
(3) Chemistry Department, Faculty of Mathematics and Natural Sciences, IPB University

Abstract

The Trichoderma hamatum produces various secondary metabolites that can be used as Candida albicans.  This research aimed to isolate T. hamatum from the coffee (Coffea canephora) rhizosphere and analyze the fungal compounds to control the pathogenic fungus C. albicans. T. hamatum was isolated using the dilution method, and the fungal identification was used, combining morphological and molecular characteristics of ITS rDNA. The potency of T. hamatum as C. albicans was determined by antagonist test using the double-layer method, while for culture filtrate, ethyl acetate and n-hexane filtrate extracts were carried out by the agar diffusion method. The compounds in the most active extract were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). T. hamatum inhibits C. albicans growth in antagonistic and filtrate with 15.53 mm and 14.40 mm of inhibition zone. It indicated that both culture and fungal filtrate had similar activities on C. albicans. The ethyl acetate extract (minimum inhibitory concentration, MIC of 0.50%) showed more potent against C. abicans than n-hexane extract (MIC of 15.00%). The potential active compound in the ethyl acetate extract would be 9-Octadecenoic acid (Z) methyl ester. The 9-Octadecenoic acid (Z) methyl ester could be used as an alternative candidate to control Candida.

Keywords

clear zone, filtrate extract, ITS rDNA, Trichoderma hamatum, 9-Octadecenoic acid (Z) methyl ester

Full Text:

PDF

References

Ali, A., Javaid, A., & Shoaib, A. (2017). GC-MS analysis and antifungal activity of methanolic root extract of Chenopodium album against Sclerotium rolfsii. Planta Daninha, 35, 1–8. https://doi.org/10.1590/s0100-83582017350100046.

Asghar, S. F., Habib-ur-Rehman, Choudahry, M. I., & Rahman, A. (2011). Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extract of Iris germanica. International Journal of Genetics and Molecular Biology, 3(7), 95–100.

Awad, N. E., Kassem, H. A., Hamed, M. A., El-Feky, A. M., Elnaggar, M. A. A., Mahmoud, K., & Ali, M. A. (2018). Isolation and characterization of the bioactive metabolites from the soil derived fungus Trichoderma viride. Mycology, 9(1), 70–80. https://doi.org/10.1080/21501203.2017.1423126.

Balamurugan, M., & Selvam, G. G. (2013). Biochemical study and GC-MS analysis of Hypnea musciformis (Wulf.) Lamouroux Mohan. American-Eurasian Journal of Scientific Research, 8(3), 117–123. https://doi.org/10.5829/idosi.aejsr.2013.8.3.12071.

Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi 4th edition, 218.

Birch, L. E., & Ruddat, M. (2005). Siderophore accumulation and phytopathogenicity in Microbotryum violaceum. Fungal Genetics and Biology, 42(7), 579–589. https://doi.org/10.1016/j.fgb.2004.11.001.

Cheng, P., Song, W., Gong, X., Liu, Y., Xie, W., Huang, L., & Hong, Y. (2015). Proteomic approaches of Trichoderma hamatum to control Ralstonia solanacearum causing pepper bacterial wilt. International Journal of Agriculture and Biology, 17(6), 1101–1109. https://doi.org/10.17957/IJAB/15.0049.

Desbois, A. P., & Smith, V. J. (2014). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629–1642. https://doi.org/10.1007/s00253-009-2355-3.

Elias, F., Woyessa, D., & Muleta, D. (2016). Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. International Journal of Microbiology.https://doi.org/10.1155/2016/5472601.

Ferrer, J. (2000). Vaginal candidosis: Epidemiological and etiological factors. International Journal of Gynecology and Obstetrics, 71, 21–27. https://doi.org/10.1016/s0020-7292(00)00350-7

François, N., Charity, N. M., Fred, O., Meryl, C., Nicholas, A., Jones, O. M., & Elizabeth, M. K. (2020). Antimycobacterial activities, cytotoxicity and phytochemical screening of extracts for three medicinal plants growing in Kenya. Journal of Medicinal Plants Research, 14(4), 129–143. https://doi.org/10.5897/jmpr2020.6905.

Hussein, H. J., Hadi, M. Y., & Hameed, I. H. (2016). Study of chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and gas chromatography - mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 8(3), 60–89. https://doi.org/10.5897/JPP2015.0372.

Horváth, Á., Wayman, W. R., Urbányi, B., Ware, K. M., Dean, J. C., & Tiersch, T. R. (2005). The relationship of the cryoprotectants methanol and dimethyl sulfoxide and hyperosmotic extenders on sperm cryopreservation of two North-American sturgeon species. Aquaculture, 247(1–4), 243–251. https://doi.org/10.1016/j.aquaculture.2005.02.007

Jeleń, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K., & Strakowska, J. (2014). Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress, 13(3), 589–600. https://doi.org/10.1007/s11557-013-0942-2.

Jeleń, H. H. (2003). Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Letters in Applied Microbiology, 36(5), 263–267. https://doi.org/10.1046/j.1472-765X.2003.01305.x

Kamiyama, M., Horiuchi, M., Umano, K., Kondo, K., Otsuka, Y., & Shibamoto, T. (2013). Antioxidant/anti-inflammatory activities and chemical composition of extracts from the mushroom Trametes versicolor. International Journal of Nutrition and Food Sciences, 2(2), 85–91. https://doi.org/10.11648/j.ijnfs.20130202.19.

Kandula, D. R. W., Jones, E. E., Stewart, A., McLean, K. L., & Hampton, J. G. (2015). Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Science and Technology, 25(9), 1052–1069. https://doi.org/10.1080/09583157.2015.1028892

Kuppuswamy, K. M., Jonnalagadda, B., & Arockiasamy, S. (2013). GC-MS analysis of chloroform extract of Croton bonplandianum. International Journal of Pharma and Bio Sciences, 4(4).

Lehner, S. M., Atanasova, L., Neumann, N. K. N., Krska, R., Lemmens, M., Druzhinina, I. S., & Schuhmacher, R. (2013). Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Applied and Environmental Microbiology, 79(1), 18–31. https://doi.org/10.1128/AEM.02339-12.

Lima, L. A. R. dos S., Johann, S., Cisalpino, P. S., Pimenta, L. P. S., & Boaventura, M. A. D. (2011). In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A.St.-Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis. Revista Da Sociedade Brasileira de Medicina Tropical, 44(6), 777–780. https://doi.org/10.1590/s0037-86822011000600024.

Lyu, X., Zhao, C., & Yan, Z. hua. (2016). Efficacy of nystatin for the treatment of oral candidiasis: a systematic review and meta-analysisy, Drug design, development and therapy. 10, 1161–1171. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801147/pdf/dddt-10-1161.pdf.

Mallikharjuna Rao, K. L. N., Siva Raju, K., & Ravisankar, H. (2016). Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere. Brazilian Journal of Microbiology, 47(1), 25–32. https://doi.org/10.1016/j.bjm.2015.11.007.

Monroy-Pérez, E., Paniagua-Contreras, G. L., Rodríguez-Purata, P., Vaca-Paniagua, F., Vázquez-Villaseñor, M., Díaz-Velásquez, C.,Vaca, S. (2016). High virulence and antifungal resistance in clinical strains of Candida albicans. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016, 7. https://doi.org/10.1155/2016/5930489.

Mutawila, C., Vinale, F., Halleen, F., Lorito, M., & Mostert, L. (2016). Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathology, 65(1), 104–113. https://doi.org/10.1111/ppa.12385.

Narayana, K. J. P., Prabhakar, P., Vijayalakshmi, M., Venkateswarlu, Y., & Krishna, P. S. J. (2008). Study on bioactive compounds from Streptomyces sp. ANU 6277. Polish Journal of Microbiology, 57(1), 35–39.

Rao, M. R. K., Kumar, M. S., & Jha, N. K. (2015). GC-MS analysis, anti-microbial, antioxidant activity of an Ayurvedic medicine, Nimbapatradi Choornam. Journal of Chemical and Pharmaceutical Research, 7(9), 319–325. Retrieved from www.jocpr.com

Riddell, R. W. (1950). Mycological society of america permanent stained mycological preparations obtained by slide culture. Journal of Mycological Society of America, 42(2), 265–270.

Rundengan, C., Fatimawali, & Simbala, H. (2017). Uji daya hambat ekstrak etanol biji pinang yaki (Areca vestiaria) terhadap bakteri Stapyhlococcus Aureus, Escherichia Coli, Pseudomonas Aeruginosa. Pharmacon, 6(1), 37–46. https://doi.org/10.35799/pha.6.2017.15003.

Sadykova, V. S., Kurakov, A. V., Kuvarina, A. E., & Rogozhin, E. A. (2015). Anti-microbial activity of fungi strains of Trichoderma from Middle Siberia. Applied Biochemistry and Microbiology, 51(3), 355–361. https://doi.org/10.1134/S000368381503014X.

Sambrook, J., & Russell, D. w. (2013). Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (Vol. 53).

Scharf, D. H., Brakhage, A. A., & Mukherjee, P. K. (2016). Gliotoxin - bane or boon? Environmental Microbiology, 18(4), 1096–1109. https://doi.org/10.1111/1462-2920.13080

Silva, G. M. S. W., & Wansapala, M. A. J. (2016). Determination of antioxidant activity and phytochemical compounds in natural flavor enhancer, 6(10), 13–18.

Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599. https://doi.org/10.1093/molbev/msm092.

Tendencia, E. A. (2004). Chapter 2. Disk diffusion method. Laboratory Manual of Standardized Methods for Antimicrobial Sensitivity Tests for Bacteria Isolated from Aquatic Animals and Environment, 13–29. Retrieved from http://repository.seafdec.org.ph/handle/10862/1635.

Tsui, C., Kong, E. F., & Jabra-Rizk, M. A. (2016). Pathogenesis of Candida albicans biofilm. Pathogens and Disease, 74(4), ftw018. https://doi.org/10.1093/femspd/ftw018.

Vasudevan, R., Ramalinga Chandra Sekar, A., Sundarakannan, B., & Velkennedy, R. (2012). A technique to dispose waste plastics in an ecofriendly way - Application in construction of flexible pavements. Construction and Building Materials, 28(1), 311–320. https://doi.org/10.1016/j.conbuildmat.2011.08.031.

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. PCR Protocols, 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1.

Yadav, M., Yadav, A., Kumar, S., Sharma, D., & Yadav, J. P. (2014). Evaluation of in vitro anti-microbial potential of endophytic fungi isolated from Eugenia jambolana lam. International Journal of Pharmacy and Pharmaceutical Sciences, 6(5), 208–211.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.