Removal of Textile Dye, RBBR, via Decolorization by Trametes hirsuta AA-017
(1) Research Center for Biotechnology, National Research and Innovation Agency (BRIN)
(2) Research Center for Biotechnology, National Research and Innovation Agency (BRIN)
(3) Research Center for Biotechnology, National Research and Innovation Agency (BRIN)
(4) Research Center for Biotechnology, National Research and Innovation Agency (BRIN)
(5) Research Center for Biotechnology, National Research and Innovation Agency (BRIN)
(6) Faculty of Technobiology, Sumbawa University of Technology
(7) Research Center for Biotechnology, National Research and Innovation Agency (BRIN)
Abstract
The use of synthetic dyes has an impact on the possibility of disposing such dyes into the environment. Fungal decolorization is one promising approach due to its capability to degrade dyes, thus, exploring fungi that can be applied in dye decolorization is essential. We investigated our potential strain of Trametes hirsuta to decolorize Remazol brilliant blue R (RBBR). The enzyme activity of laccase in various conditions was observed using Syringaldazine as a substrate, while fungal immobilization was conducted using calcium alginate as a solid support. The results indicated that CuSO4 was the best inducer for the decolorization process. The fungus was able to perform 79.5% of RBBR decolorization for 48 hours in the presence of CuSO4. Laccase was the prominent detected ligninolytic enzyme when decolorization was performed. The immobilized cells were able to decolorize 85% RBBR under 0.8 mM CuSO4 andused for 3 cycles of decolorization. This study reveals the potential of fungal usage in the form of the immobilized and free cell to overcome the persistence of dye pollutants problem, as it is considered an effective, economic and eco-friendly approach for RBBR dye decolorization. These strategies can be suggested to encourage ecologically sustainable development for bioremediation.
Keywords
Full Text:
PDFReferences
Ahmad, M. A., Herawan, S. G., & Yusof, A. A. (2014). Equilibrium, Kinetics, and Thermodynamics of Remazol Brilliant Blue R Dye Adsorption onto Activated Carbon Prepared from Pinang Frond. ISRN Mechanical Engineering, 2014, 1–7.
Ahmedi, A., Abouseoud, M., Abdeltif, A., & Annabelle, C. (2015). Effect of Diffusion on Discoloration of Congo Red by Alginate Entrapped Turnip (Brassica rapa) Peroxidase. Enzyme Research, 2015, 1–9.
Alam, R., Clara, F., Nurfajrin, N., Alam, B., Han, S., Heri, D., & Yanto, Y. (2021). Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. Journal of Hazardous Materials, 405(2021).
Andriani, A., Tachibana, S., & Itoh, K. (2016). Effects of saline-alkaline stress on benzo[a]pyrene biotransformation and ligninolytic enzyme expression by Bjerkandera adusta SM46. World J Microbiol, 32, 39–55.
Andriani, A., Sukorini, A., Perwitasari, U., & Yopi. (2019). Enhancement of laccase production in a new isolated Trametes hirsuta LBF-AA017 by lignocellulosic materials and its application for removal of chemical dyes. IOP Conference Series: Earth and Environmental Science, 308.
Andriani, A., & Yanto, D. H. Y. (2021). Comparative kinetic study on biodecolorization of synthetic dyes by Bjerkandera adusta SM46 in alginate beads-packed bioreactor system and shaking culture under saline-alkaline stress. Biocatalysis and Biotransformation, 1–12.
Anita, S. H., Sari, F. P., & Yanto, D. H. Y. (2019). Decolorization of synthetic dyes by ligninolytic enzymes from Trametes hirsuta D7. Makara Journal of Science, 23(1), 44-50.
Arica, M.Y., Kacar, Y., & Genc, O. (2001), Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology, 80, 121–129.
Baldrian, P., & Gabriel, J. (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett., 206, 69-74.
Barapatre, A., Aadil, K. R., & Jha, H. (2017). Biodegradation of Malachite Green by the Ligninolytic Fungus Aspergillus flavus. Clean Soil Air Water, 45(4).
Bilal, M., & Iqbal, H. M. N. (2019). Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatalysis and Agricultural Biotechnology, 20(2019), 1–8.
Cipolatti, E. P., Silva, M. J. A., Klein, M., Feddern, V., Feltes, M. M. C., Oliveira, J. V., Ninow, J. L., & de Oliveira, D. (2014). Current status and trends in enzymatic nano immobilization. Journal of Molecular Catalysis B: Enzymatic, 99, 56–67.
Das, L., Das, P., Bhowal, A., & Bhattacharie, C. (2020). Treatment of malachite green dye containing solution using bio-degradable Sodium alginate/NaOH treated activated sugarcane bagasse charcoal beads: Batch, optimization using response surface methodology and continuous fixed bed column study. Journal of Environmental Management, 276(2020).
de Souza, C. G. M., Tychanowicz, G. K., de Souza, D. F., & Peralta, R. M. (2004). Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. J Basic Microbiol, 44, 129–136.
Dewi, R.S., Ilyas, M., & Sari, A.A. (2019). Ligninolytic Enzyme Immobilization from Pleurotus ostreatus for Dye and Batik Wastewater Decolorization. Jurnal Pendidikan IPA Indonesia, 8(2), 220–229.
Dominguez, A., Couto. S. R., & Sanroma´n, M. A. (2005). Dye decolorization by Trametes hirsuta immobilized into alginate beads. World Journal of Microbiology and Biotechnology, 21(4), 405–409.
Eichlerova, I., & Baldrian, P. (2020). Ligninolytic Enzyme Production and Decolorization Capacity of Synthetic Dyes by Saprotrophic White Rot, Brown Rot, and Litter Decomposing Basidiomycetes. Journal of Fungi, 6(4), 301.
Elisashvili, V., Kachlishvili, E., Khardziani, T., & Agathos, S. N. (2010). Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology, 37(10), 1091–1096.
Fu, Y., & Viraraghavan, T. (2001). Fungal decolorization of dye wastewaters : a review. Bioresource Technology, 79, 252-262.
Gupta, V. K., Khamparia, S., Tyagi, I., Jaspal, D., & Malviya, A. (2015). Decolorization of mixture of dyes : A critical review, Global J. Environ. Sci. Manage., 1(1), 71–94.
Hajkacem, S., Galai, S., José, F., & Fernandez, H. (2020). Bioreactor Membranes for Laccase Immobilization Optimized by Ionic Liquids and Cross-Linking Agents. Applied Biochemistry and Biotechnology, 190, 1–17.
Hayat, H., Mahmood, Q., Pervez, A., Bhatti, Z. A., & Baig, S. A. (2015). Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 154, 149–153.
Jankowska, K., Zdarta, J., Grzywaczyk, A., Kije, E., & Biadasz, A. (2020). Electrospun poly (methyl methacrylate)/ polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation. Environmental Research, 184(2020), 1–10.
Jin, X., & Ning, Y. (2013). Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J Hazard Mater, 262, 870–877.
Khan, R., Bhawana, P., & Fulekar, M. H. (2013). Microbial decolorization and degradation of synthetic dyes : a review. Rev Environ Sci Biotechnol, 12, 75–97.
Leenen, E.J.T.M., dos Santos, V.A.P., Grolle, K.C.F., Tramper, J., & Wijffels, R.H. (1996). Characteristics of and Selection Criteria for Support Materials for Cell Immobilization in Wastewater Treatment. Water Research, 30(12), 2985–2996.
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research & Innovation, 3, 275-290.
Mariko, T., Masaya, N., Atsumi, N., & Mitsuro, I. (2004). Manganese peroxidase from Phanerochaete crassa WD 1694. Bull FFPRI, 3, 7–13.
Nuryana, I., Ilmiah, Z., Andriani, A., & Yopi. (2019). Laccase and manganese peroxidase (MnP) activities in the white-rot fungus Trametes hirsuta in response to aromatic compounds. Annales Bogorienses, 23(2), 66-71.
Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., & Sannia, G. (2000). Copper Induction of Laccase Isoenzymes in the Ligninolytic Fungus Pleurotus ostreatus. Appl. Environ. Microbiol, 66 (3), 920–924.
Pelosi, B. T., Lima, L. K. S., & Viera, M. G. A. (2014). Removal of the synthetic dye Remazol Brilliant Blue R from textile industry wastewaters by biosorption on the macrophyte Salvinia natans. Brazilian Journal of Chemical Engineering, 31(4), 1035–1045.
Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., & Faraco, V. (2011). Induction and transcriptional regulation of laccases in fungi. Curr. Genomics, 12, 104–112.
Ramírez-Montoya, L. A., Hernández-Montoya, V., Montes-Morán, M. A., Jáuregui-Rincón, J., & Cervantes, F. J. (2015). Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor. Journal of Molecular Liquids, 212(2015), 30–37.
Revankar, M. S., & Lele, S. S. (2006). Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochem, 41(3), 581–588.
Saparrat, M. C. N. (2004). Optimizing production of extracellular laccase from Grammothele subargentea CLPS no. 436 strain. World J. Microbiol. Biotechnol, 20(6), 583–586,
Šekuljica, N. Z., Prlainović, N. Z., Stefanović, A. B., Žuža, M. G., Čičkarić, D. Z., Mijin, D. Z., & Knežević-Jugović, Z. D. (2015). Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase : optimization and kinetic study. The Scientific World Journal, 2015, 1–12.
Sen, S. K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolorization and degradation of azo dyes : a review. British Mycological Society, 30(3), 112-133.
Shutova, V. V., Revin, V. V., & Myakushina, Y. A. (2008). The effect of copper ions on the production of laccase by the fungus Lentinus (Panus) tigrinus. Applied Biochemistry and Microbiology, 44 (6), 619–623.
Solé, M., Müller, I., Pecyna, M. J., Fetzer, I., Harms, H., & Schlosser, D. (2012). Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic hyphomycete Clavariopsis aquatica. Appl. Environ. Microbiol, 78, 4732-4739.
Susana, W., Hernández-Monjaraz, C2audillo-Pérez, C., Ulises, P., Salazar-Sánchez, Lizbeth, K., & Macías-Sánchez. (2018). Influence of iron and copper on the activity of laccases in Fusarium oxysporum f. sp. Lycopersici, Brazilian Journal of Microbiology, 49, 269-275.
Tehrani-bagha, A. R., & Holmberg, K. (2013). Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials, 6, 580–608.
Yanto, D. H. Y., Tachibana, S., & Itoh, K. (2014). Biodecolorization of textile dyes by immobilized enzymes in a vertical bioreactor system. Procedia Environ Sci, 20, 235–244.
Yang, J., Wang, G., Ng, T. B., Lin, J., & Ye, X. (2016). Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients. Front. Microbiol, 6(2016), 1558.
Yang, Y., Wei, F., Zhuo, R., Fan, F., Liu, H., Zhang, C., Ma, L., Jiang, M., & Zhang, X. (2013). Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds. PLoS ONE, 8(11), 1–9.
Zavarzina, A. G., & Zavarzin, A. A. (2006). Laccase and tyrosinase activities in lichens, Microbiology, 75, 546–556.
Ziarani, G., Moradi, R., Lashgari, N., & Kruger, H. G. (2018). Introduction and Importance of Synthetic Organic Dyes. In: Ziarani, G.M., Moradi, R., Lashgari, N. and Kruger, H.G. (Eds.). Metal-Free Synthetic Organic Dyes.
Zin, K. M., Halmi, M. I. E., Gani, S. S. A., Zaidan, U. H., Samsuri, A. W., & Shukor, M. Y. A. (2020). Microbial decolorization of triazo dye, direct blue 71 : an optimization approach using response surface methodology (RSM) and artificial neural network (ANN). BioMed Research International, 20, 1–6.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.