Profile of Flavonoid and Antioxidant Activity in Cell Suspension Culture of Elaeocarpus grandiflorus
(1) Department of Biology, Faculty of Mathematics and Sciences, Universitas Negeri Semarang
(2) Department of Biology, Faculty of Mathematics and Sciences, Universitas Negeri Semarang
(3) Department of Biology, Faculty of Mathematics and Sciences, Universitas Negeri Semarang
(4) Department of Biology, Faculty of Mathematics and Sciences, Universitas Negeri Semarang
(5) Department of Biology, Faculty of Mathematics and Sciences, Universitas Negeri Semarang
Abstract
Cell suspension cultures of Elaeocarpus grandiflorus produce flavonoids and various secondary metabolites. Flavonoid profile and antioxidant activity of the suspension culture extract of E. grandiflorus cells have not been studied. Therefore, this research aimed to analyze the antioxidant activity and flavonoid profile of the suspension culture extract of E. grandiflorus cells. Cell suspension cultures of E. grandiflorus were produced from leaf stalk callus that grew on WPM medium with a growth regulator 2.5 ppm 2,4-D. Cells were harvested at 30 days old and then extracted for profile analysis of bioactive compounds using the LC-MS method. The antioxidant activity analysis was conceded out using the DPPH method. The results showed that there were 32 types of flavonoids, of which 11 compounds had a concentration of more than 1% of the total bioactive compounds and had the potential to have antioxidant activity. The analysis results also showed that flavonoids type, composition, and antioxidant activity were not significantly different between the ages of E. grandiflorus cell suspension cultures. In addition, there was no correlation between flavonoid concentration and antioxidant activity. This study enriches information about secondary metabolites production in the E. grandiflorus cell culture which is still very rarely studied because of its rarity. The study also provides potential antioxidant as a scientific basis evident for E. grandifloras cell culture application in medical purpose.
Keywords
Full Text:
PDFReferences
Amoo, S. O., & van Staden, J. (2013). Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell, Tissue and Organ Culture, 112(2), 249–256.
Anggraito, Y. U., Nugrahaningsih, W. H., Musafa, F., Mukhtar, K., Wijawati, Rostriana, Y., Safitri, & Habibah, N. A. (2020). Secondary metabolites in Elaeocarpus grandiflorus cell culture in WPM medium with various concentrations of PGR. Journal of Physics: Conference Series, 1524(1), 2–7.
Ashraf, J., Mughal, E. U., Sadiq, A., Bibi, M., Naeem, N., Ali, A., Massadaq, A., Fatima, N., Javid, A., Zafar, M. N., Khan, B. A., Nazar, M. F., Mumtaz, A., Tahir, M. N., & Mirzaei, M. (2020). Exploring 3-hydroxyflavone scaffolds as mushroom tyrosinase inhibitors: synthesis, X-ray crystallography, antimicrobial, fluorescence behaviour, structure-activity relationship and molecular modelling studies. Journal of Biomolecular Structure and Dynamics, 39(18), 1–16.
Babaei, F., Moafizad, A., Darvishvand, Z., Mirzababaei, M., Hosseinzadeh, H., & Nassiri-Asl, M. (2020). Review of the effects of vitexin in oxidative stress-related diseases. Food Science and Nutrition, 8(6), 2569–2580.
Balasubramanya, S., Rajanna, L., & Anuradha, M. (2012). Effect of plant growth regulators on morphogenesis and forskolin production in Plectranthus barbatus Andrews. In Vitro Cellular and Developmental Biology - Plant, 48(2), 208–215.
Beigmohamadi, M., Movafeghi, A., Sharafi, A., Jafari, S., & Danafar, H. (2019). Cell suspension culture of Plumbago europaea L. towards production of plumbagin. Iranian Journal of Biotechnology, 17(2), 46–54.
Bualee, C., Ounaroon, A., & Jeenapongsa, R. (2007). Antidiabetic and long-term effects of Elaeocarpus grandiflorus. Naresuan University Journal, 15(1), 17–28.
Calderón-Montaño, J. M., Burgos-Morón, E., Pérez-Guerrero, C., & López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11(4), 298–344.
Castellar, A., Gagliardi, R. F., & Mansur, E. (2011). In vitro propagation and establishment of callus and cell suspension cultures of Petiveria alliacea L., a valuable medicinal plant. Journal of Medicinal Plants Research, 5(7), 1113–1120.
Chen, Y. H., & Yang, C. Y. (2020). Ultrasound-assisted extraction of bioactive compounds and antioxidant capacity for the valorization of Elaeocarpus serratus l. Leaves. Processes, 8(10), 1–11.
Chowjarean, V., Prueksasit, T., Joyjamras, K., & Chanvorachote, P. (2019). Isovitexin increases stem cell properties and protects against PM2.5 in keratinocytes. In Vivo, 33(6), 1833–1841.
Corradini, E., Foglia, P., Giansanti, P., Gubbiotti, R., Samperi, R., & Laganà, A. (2011). Flavonoids: Chemical properties and analytical methodologies of identification and quantitation in foods and plants. Natural Product Research, 25(5), 469–495.
Dai, F., Yan, W. J., Du, Y. T., Bao, X. Z., Li, X. Z., & Zhou, B. (2017). Structural basis, chemical driving forces and biological implications of flavones as Cu(II) ionophores. Free Radical Biology and Medicine, 108(2), 554–563.
Dao, N. T., Jang, Y., Kim, M., Nguyen, H. H., Pham, D. Q., Dang, Q. Le, van Nguyen, M., Yun, B. S., Pham, Q. M., Kim, J. C., & Vu, D. H. (2019). Chemical constituents and anti-influenza viral activity of the leaves of vietnamese plant Elaeocarpus tonkinensis. Records of Natural Products, 13(1), 71–80.
Deepika, R., Singh, J., & Kaur, N. (2018). Comparison of total phenolic content, total flavonoid content, antioxidant capacity and free radical scavenging activity of leaves of Elaeocarpus sphaericus and Roots of Pelargonium zonale. International Journal of Current Microbiology and Applied Sciences, 7(2), 2846–2854. https://doi.org/10.20546/ijcmas.2018.702.347
Enogieru, A. B., Haylett, W., Hiss, D. C., Bardien, S., & Ekpo, O. E. (2018). Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxidative Medicine and Cellular Longevity, 2018(4): 1-17.
Ferreyra, M. L. F., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(9), 1–15.
Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagège, D., Courtois, D., & Joseph, C. (2013). The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture, 113(1), 25–39. https://doi.org/10.1007/s11240-012-0248-0
Ghofrani, S., Joghataei, M. T., Mohseni, S., Baluchnejadmojarad, T., Bagheri, M., Khamse, S., & Roghani, M. (2015). Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms. European Journal of Pharmacology, 764(10), 195–201.
Habibah, N. A. (2009). Efektivitas penambahan elisitor asam jasmonik dalam peningkatan sintesis senyawa bioaktif andrografolid pada kultur suspensi sel sambiloto [The effectiveness of addition of jasmonic acid elicitor in increasing the synthesis of andrographolide bioactive compounds in sambiloto cell suspension culture]. Biosaintifika: Journal of Biology & Biology Education, 1(1), 11–18.
Habibah, N. A., Moeljopawiro, S., Dewi, K., & Indrianto, A. (2017). Flavonoid production, growth and differentiation of Stelechocarpus burahol (Bl.) hook. f. and th. cell suspension culture. Pakistan Journal of Biological Sciences, 20(4), 197–203.
Habibah, N. A., Nugrahaningsih, W. H., Ulung Anggraito, Y., Mukhtar, K., Wijayanti, N., Mustafa, F., & Rostriana, Y. (2019). Effect of growth regulators on cell growth and flavonoid production in cell culture of Elaecarpus grandiflorus. IOP Conference Series: Earth and Environmental Science, 391(1). 012061
Hao, G., Du, X., Zhao, F., Shi, R., & Wang, J. (2009). Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell, Tissue and Organ Culture, 97(2), 175–185.
Herlina, N., Riyanto, S., Martono, S., & Rohman, A. (2018). Antioxidant activities, phenolic and flavonoid contents of methanolic extract of Stelechocarpus Burahol fruit and its fractions. Dhaka University Journal of Pharmaceutical Sciences, 17(2), 153–159. https://doi.org/10.3329/dujps.v17i2.39170
Hernández-Altamirano, J. M., Ugidos, I. F., Palazón, J., Bonfill, M., García-Angulo, P., Álvarez, J., Acebes, J. L., Bye, R., & Encina, A. (2020). Production of encecalin in cell cultures and hairy roots of Helianthella quinquenervis (Hook.) A. Gray. Molecules, 25(14), 1–20. https://doi.org/10.3390/molecules25143231
Huang, X., Yao, J., Zhao, Y., Xie, D., Jiang, X., & Xu, Z. (2016). Efficient rutin and quercetin biosynthesis through flavonoids-related gene expression in Fagopyrum tataricum gaertn. Hairy root cultures with UV-B irradiation. Frontiers in Plant Science, 7(2, 1–11.
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013(2).1-16
Lam, K. Y., Ling, A. P. K., Koh, R. Y., Wong, Y. P., & Say, Y. H. (2016). A review on medicinal properties of orientin. Advahttps://doi.org/10.1155/2016/4104595
Liang, T., Jiao, S., & Jing, P. (2021). Molecular interaction between pectin and catechin/procyanidin in simulative juice model: Insights from spectroscopic, morphology, and antioxidant activity. Journal of Food Science, 86(6), 2445–2456.
Okselni, T., Santoni, A., Dharma, A., & Efdi, M. (2018). Determination of antioxidant activity, total phenolic content, and total flavonoid content of roots, stem bark, and leaves of Elaeocarpus mastersii king. Rasayan Journal of Chemistry, 11(3), 1211–1216.
Rahayu, E. S., Dewi, N. K., & Bodijantoro, F. P. M. H. (2018). Profile of Elaeocarpus grandiflorus and Ziziphus mauritiana as identity plants of Salatiga and Tegal towns, Central Java Province, Indonesia. Journal of Physics: Conference Series, 983(1).
Samsonowicz, M., Regulska, E., & Kalinowska, M. (2017). Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects. Chemico-Biological Interactions, 273, 245–256.
Savitri, G. R., Triatmoko, B., & Nugraha, A. S. (2020). Skrining fitokimia dan uji aktivitas antibakteri ekstrak dan fraksi tumbuhan anyang-anyang (Elaeocarpus grandiflorus J. E. Smith.) terhadap Escherichia coli [phytochemical screening and antibacterial activity test of extracts and fractions of anyang-anyang plant (Elaeocarpus grandiflorus J. E. Smith.) against Escherichia coli]. Journal of Pharmaceutical Science and Clinical Research, 5(1), 22–32.
Seelinger, G., Merfort, I., & Schempp, C. M. (2008). Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Medica, 74(14), 1667–1677.
Shah, G., Singh, P. S., Mann, A., & Shri, R. (2011). Scientific basis for the chemical constituent and therapeutic use of Elaeocarpus species : a Review. International Journal of Instittutional Pharmacy And Life Sciences, 1(8), 267–278.
Suthar, R. S., & Shah, K. R. (2015). Optimization of callus and cell suspension culture of Capsicum annum L. International Journal of Pharma and Bio Sciences, 6(4), B664–B671.
Tan, S. H., Musa, R., Ariff, A., & Maziah, M. (2010). Effect of plant growth regulators on callus, cell suspension and cell line selection for flavonoid production from pegaga (Centella asiatica L. urban). American Journal of Biochemistry and Biotechnology, 6(4), 284–299.
Tvrda, E., Straka, P., Galbavy, D., & Ivanic, P. (2019). Epicatechin provides antioxidant protection to bovine spermatozoa subjected to induced oxidative stress. Molecules, 24(18), 1–18.
Wijawati, N., Habibah, N. A., Musafa, F., Mukhtar, K., Anggraito, Y. U., & Widiatningrum, T. (2019). Pertumbuhan kalus rejasa (Elaeocarpus grandiflorus) dari eksplan tangkai daun pada kondisi gelap [Growth of callus rejasa (Elaeocarpus grandiflorus) from petiole explants in dark conditions]. Life Science, 8(1), 17–24.
Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41(6), 1060–1066.
Yuan, L., Wang, J., Wu, W., Liu, Q., & Liu, X. (2016). Effect of isoorientin on intracellular antioxidant defence mechanisms in hepatoma and liver cell lines. Biomedicine and Pharmacotherapy, 81, 356–362.
Zaman, M. A. K., Azzeme, A. M., Ramle, I. K., Normanshah, N., Ramli, S. N., Shaharuddin, N. A., Ahmad, S., & Abdullah, S. N. A. (2020). Induction, multiplication, and evaluation of antioxidant activity of Polyalthia bullata callus, a woody medicinal plant. Plants, 9(12), 1–21.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.