Multiple Tolerances of Cassava Germplasm to Drought Stress and Red Spider Mite Attacks

Herdina Pratiwi(1), Tinuk Sri Wahyuni(2), Novita Nugrahaeni(3),


(1) Indonesian Legumes and Tuber Crops Research Institute, Jalan Raya Kendalpayak KM 8 PO BOX 66 Malang 65101, East Java, Indonesia
(2) Indonesian Legumes and Tuber Crops Research Institute, Jalan Raya Kendalpayak KM 8 PO BOX 66 Malang 65101, East Java, Indonesia
(3) Indonesian Legumes and Tuber Crops Research Institute, Jalan Raya Kendalpayak KM 8 PO BOX 66 Malang 65101, East Java, Indonesia

Abstract

Uncertain climate change encourages the assembly of cassava varieties with multiple tolerances to both abiotic and biotic stress. The research aimed to evaluate the multiple tolerances of cassava germplasm to drought stress and red spider mite attacks. The research was held at Installation for Research and Assessment of Agricultural Technology of Muneng from February to December 2019 using a randomized block design nested in two environments with two replicates. The treatments consisted of 50 cassava accessions from the Indonesian Legumes and Tuber Crops Research Institute collection and two irrigation environments, i.e. a normal environment and a drought environment. Drought stress caused a decrease in plant height, tuber yield; on the other hand, increased red spider mite attack. Eight accessions have Stress Tolerance Index values reaching above 1.00, and two of them also have resistance to red spider mites.  Accessions MLG 10361 and MLG 10362 had a high level of tolerance to drought stress as well as resistance to red spider mites so that both accessions may be used as a source of multiple resistance genes for biotic and abiotic stresses. 

Keywords

cassava accessions; drought; red spider mite; multiple tolerance

Full Text:

PDF

References

Adjebeng-Danquah, J., Gracen, V. E., Offei, S. K., Asante, I. K., & Manu-Aduening, J. (2016). Genetic variability in storage root bulking of cassava genotypes under irrigation and no irrigation. Agriculture and Food Security, 5(1), 1–12. https://doi.org /10.1186/s40066-016-0055-7

Aye, T. M., & Howeler, R. (2017). Integrated crop management for cassava cultivation in Asia. 225–254. https://doi.org/10.19103/as. 2016.0014.23

Bellotti, A., Campo, B. V. H., & Hyman, G. (2012). Cassava Production and Pest Management: Present and Potential Threats in a Changing Environment. In Tropical Plant Biology (Vol. 5, Issue 1). https:// doi.org/10.1007/s12042-011-9091-4

Burns, A., Gleadow, R., Cliff, J., Zacarias, A., & Cavagnaro, T. (2010). Cassava: The droug ht, war and famine crop in a changing world. Sustainability, 2(11), 3572–3607. https://doi.org/10.3390/su2113572

Daryanto, S., Wang, L., & Jacinthe, P. A. (2017). Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management, 179, 18–33. https://doi.org/1 0.1016/j.agwat.2016.04.022

de Oliveira, C. R. S., Borel, J. C., Pereira, D. A., de Carvalho, B. P., Medrado, E. da S., Ishikawa, F. H., & de Oliveira, E. J. (2021). Genetic parameters and path analysis for root yield of cassava under drought and early harvest. Crop Breeding and Applied Biotechnology, 21(3), e36162137.

de Oliveira, E. J., Aidar, S. de T., Morgante, C. V., Chaves, A. R. de M., Cruz, J. L., & Filho, M. A. C. (2015). Genetic parameters for drought-tolerance in cassava. Pesquisa Agropecuaria Brasileira, 50(3), 233–241. https://doi.org/10.1590/S0100204X2015000300007

de Oliveira, E. J., Morgante, C. V., de Tarso Aidar, S., de Melo Chaves, A. R., Antonio, R. P., Cruz, J. L., & Filho, M. A. C. (2017). Evaluation of cassava germplasm for drought tolerance under field conditions. Euphytica, 213(8). https://doi.org/10.1007 /s10681-017-1972-7

Dhooria, S. M. (2016). Mite Pests of Field Crops. Fundamentals of Applied Acarology, 275–305. https://doi.org/10.1007/978-981-10159 4-6_13

Doreste, S., Arias, C., & Bellotti, A. (1979). Field evaluations of cassava cultivars for resistance to tetranychid mites. In T. Brekelbaum, A. Bellotti, & J. Lazaro (Eds.), Proceedings Cassava Protection Workshop (pp. 161–164).

El-Sharkawy, M. A. (2012). Stress-Tolerant Cassava: The Role of Integrative Ecophy siology-Breeding Research in Crop Improvement. Open Journal of Soil Science, 2, 162–186.

Ezenwaka, L., Carpio, D. P. Del, Jannink, J. L., Rabbi, I., Danquah, E., Asante, I., Danquah, A., Blay, E., & Egesi, C. (2018). Genome-w ide association study of resistance to cass ava green mite pest and related traits in cas sava. Crop Science, 58(5), 1907–1918. ht tps://doi.org/10.2135/cropsci2018.01.0024

Fernandez, G. (1992). Effective selection criteria for assessing plant stress tolerance. In Kuo, C.G. (Ed) Adaptation for food crop to temperature and water stress. In C. Kuo (Ed.), Proc. Int. Symp. AVRDC, Taiwan.

Indiati, S. W., Wahyuni, T. S., Yudha, S., & Bayu, I. (2014). Toleransi Aksesi Ubikayu Terhadap Kepinding Tepung Phenacoccus manihoti. 538–551.

Koundinya, A. V. V., Hegde, V., Sheela, M. N., & Chandra, C. V. (2018). Evaluation of Cassava Varieties for Tolerance to Water Deficit Stress conditions. Journal of Root Crops, 44(1), 70–75.

Krisnawati, A., & Adie, M. M. (2018). Evaluation of Soybean Resistance to Pod-Sucking Bug, Riptortus linearis F. and Performance of its Agronomic Characters. Biosaintifika: Journal of Biology & Biology Education, 10 (1), 213–222. https://doi.o rg/10.15294/biosaintifika.v10i1.12806

Laban, T. F., Kizito, E. B., Baguma, Y., & D. Osiru. (2013). Evaluation of Ugandan cassava germplasm for drought tolerance. International Journal of Agriculture and Crop Sciences., 5(Cmd), 212-226,. http://ij agcs.com/wpcontent/uploads/2013/02/212-226.pdf

Li, S., Cui, Y., Zhou, Y., Luo, Z., Liu, J., & Zhao, M. (2017). The industrial applications of cassava: current status, opportunities and prospects. Journal of the Science of Food and Agriculture, 97(8), 2282–2290. https:// doi.org/10.1002/jsfa.8287

More, S. J., Ravi, V., Raju, S., & J, S. K. (2020). International Web-Conference The quest for high yielding drought-tolerant cassava variety. Journal of Pharmacognosy and Phytochemistry, SP6, 433–439.

Ngongo, Y., Basuki, T., Derosari, B., Mau, Y. S., Noerwijati, K., Dasilva, H., Sitorus, A., Kotta, N. R. E., Utomo, W. H., & Wisnubroto, E. I. (2022). The Roles of Cassava in Marginal Semi-Arid Farming in East Nusa Tenggara Indonesia. Sustaina bility (Switzerland), 14(9). https://doi.org/1 0.3390/su14095439

Okogbenin, E., Setter, T. L., Ferguson, M., Mutegi, R., Ceballos, H., Olasanmi, B., & Fregene, M. (2013). Phenotypic approaches to drought in cassava: Review. Frontiers in Physiology, 4 (May), 1–15. https://doi.org /10.3389/fphys.2013.00093

Parsa, S., Medina, C., & Rodríguez, V. (2015). Sources of pest resistance in cassava. Crop Protection, 68, 79–84. https://doi.org/10 .1016/j.cropro.2014.11.007

Phoncharoen, P., Banterng, P., Vorasoot, N., Jogloy, S., Theerakulpisut, P., & Hoogen boom, G. (2019). The impact of seasonal environments in a tropical savanna climate on forking, leaf area index, and biomass of cassava genotypes. Agronomy, 9(1). https:// doi.org/10.3390/agronomy9010019

Pipatsitee, P., Eiumnoh, A., Praseartkul, P., Ponganan, N., Taota, K., Kongpugdee, S., Sakulleerungroj, K., & Cha-Um, S. (2019). Non-destructive leaf area estimation model for overall growth performances in relation to yield attributes of cassava (Manihot esculenta Cranz) under water deficit condi tions. Notulae Botanicae Horti Agrobota nici Cluj-Napoca, 47(3), 580–591. https:// doi.org/10.15835/nbha47311487

Pramudianto, P., & Sari, K. (2016). Tungau Merah (Tetranychus Urticae Koch) pada Tanaman Ubikayu dan Cara Pengendali annya. Buletin Palawija, 14(1), 36–48.

Pushpalatha, R., & Gangadharan, B. (2020). Is Cassava (Manihot esculenta Crantz) a Climate “Smart” Crop? A Review in the Context of Bridging Future Food Demand Gap. Tropical Plant Biology, 13(3), 201–211. https://doi.org/10.1007/s12042-020092 55-2

Turyagyenda, L. F., Kizito, E. B., Ferguson, M., Baguma, Y., Agaba, M., Harvey, J. J. W., & Osiru, D. S. O. (2013). Physiological and molecular characterization of drought res ponses and identification of candidate toler ance genes in cassava. AoB Plants, 5. https://doi.org/10.1093/aobpla/plt007

Ullah, A., Manghwar, H., Shaban, M., Khan, A. H., Akbar, A., Ali, U., Ali, E., & Fahad, S. (2018). Phytohormones enhanced drought tolerance in plants: a coping strategy. Environmental Science and Pollution Research, 25(33), 33103–33118. https://doi .org/10.1007/s11356-018-3364-5

Vongcharoen, K., Santanoo, S., Banterng, P., Jogloy, S., Vorasoot, N., & Theerakulpisut, P. (2018). Seasonal variation in photos ynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica, 56(4), 1398–1413. https://doi.org/10.1007/s11099-018-0849-x

Wahyuni, T. S. (2014). Pertumbuhan Tanaman dan Toleransi Aksesi Ubikayu pada Kondisi Kekeringan. Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang Dan Umbi, 747–758. http://balitkabi.litbang.pert anian.go.id/wpcontent/uploads/2015/05/747-758_Tinuk-1.pdf

Zhu, Y., Luo, X., Nawaz, G., Yin, J., & Yang, J. (2020). Physiological and Biochemical Responses of four cassava cultivars to drought stress. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-638 09-8

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.