Extract of cell culture Rejasa (Elaeocarpus grandiflorus) Decrease Blood Glucose Through Insulin Receptor Pathway

W H Nugrahaningsih(1), Noor Aini Habibah(2), Ika Fitria Ariyani(3),

(1) Physiology Laboratory of Biology Department UNNES), Indonesia
(2) Plant Tissue Culture Laboratory of Biology Department UNNES, Indonesia
(3) Physiology Laboratory of Biology Department UNNES), Indonesia


Diabetes mellitus is a metabolic disease characterized by the high blood glucose levels. The high prevalence of Diabetes Mellitus needed an innovation in prevention, treatment and control of case. Rejasa (Elaeocarpus grandiflorus) is one of plants has the potential to develop as an antidiabetic. The pretest and posttest control group design were conducted to 30 Rattus norvegicus Wistar strain. The rats induced alloxan monohydrate intraperitoneally at dose of 125 mg/kg BW once day until the blood glucose above 200 mg/dL The hyperglycemic rats were divided into 5 groups, that were negative control (K-), positive control (K+, given glibenclamide 0.072 mg/200 gBW), P1 (given E. glandiflorus cell extract 1 mg/kgBW), P2 (given E. glandiflorus cell extract 10 mg/kgBW), and P3 (given E. glandiflorus cell extract 100 mg/kgBW). The rats were given E. glandiflorus and glibenclamide orally for 10 days. Measurement of blood glucose levels was carried out on day 0 and day 10, after 10 h fasting. The mechanism of antidiabetic effect of E. glandiflorus was explored by in silico. The mean of blood glucose levels on day 0 were 455.2 mg/dL (K), 422.8 mg/dL (K+), 469.8 mg/dL (P1), 355.5 mg/dL (P2) and 446 mg/dL (P3). The blood glucose levels on day 10 were 367.8 mg/dL (K-), 89.6 mg/dL (K+), 285.6 mg/dL (P1), 136.8 mg/dL (P2) and 104.8 (P3). Statistical analysis showed the difference between K- from P2(p=0.015) and P3 (p<0.001). When compared with K+, only P3 showed no difference (p=0.873). Flavonoid of E. glandiflorus act on insulin receptor pathway and involved HK2, PTPN1, AKT1, PI3KR1, HRAS and GSK3B protein. These results showed that extract cell of E. glandiflorus have antidiabetic activity on insulin receptor pathway.  


Blood glucose, Elaeocarpus grandiflorus, Insulin receptor pathway

Full Text:



AL-Ishaq RK, Abotaleb M, Kubatka P, Kajo K and Büsselberg D. (2019). Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 9, 430; doi:10.3390/biom9090430

Borghi S.M., Mizokami S.S., Pinho-Ribeiro F.A., Fattori V., Crespigio J., Clemente-Napimoga J.T., Napimoga M.H., Pitol D.L., Issa J.P.M., Fukada S.Y., et al. The Flavonoid Quercetin Inhibits Titanium Dioxide (TiO2)-Induced Chronic Arthritis in Mice. J. Nutr. Biochem. 2018;53:81–95. doi: 10.1016/j.jnutbio.2017.10.010.

Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protectsstreptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol. Res. 2005, 51,117–123

Costa L. G., Garrick J. M., Roquè P. J., Pellacani C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxidative Medicine and Cellular Longevity. 2016;2016:10. doi: 10.1155/2016/2986796

Eid, H.M.; Haddad, P.S. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017, 24, 355–364

Ganevi R. Savitri, Triatmoko B dan Nugraha AS (2020). Skrining Fitokimia dan Uji Aktivitas Antibakteri Ekstrak dan Fraksi Tumbuhan Anyang-Anyang (Elaeocarpus grandiflorus J. E. Smith.) terhadap Escherichia coli. JPSCR: Journal of Pharmaceutical Science and Clinical Research 01: 22-32

Habibah, N. A., Nugrahaningsih, N., Safitri, S., Musafa, F., & Wijawati, N. (2021). Profile of Flavonoid and Antioxidant Activity in Cell Suspension Culture of Elaeocarpus grandiflorus. Biosaintifika: Journal of Biology & Biology Education, 13(3), 328335.

Haeusler RA, McGraw TE, and Accli D. Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology 19:31–44 (2018)

Jazvinšćak Jembrek M., Vuković L., Puhović J., Erhardt J., Oršolić N. Neuroprotective effect of quercetin against hydrogen peroxide-induced oxidative injury in P19 neurons. Journal of Molecular Neuroscience. 2012;47(2):286–299. doi: 10.1007/s12031-012-9737-1.

Jazvinšćak Jembrek M., Vlainić J., Čadež V., Šegota S. Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: neuroprotective effects of quercetin at the nanoscale. PLoS One. 2018;13(10):p.e0200119. doi: 10.1371/journal.pone.0200119

Klara Zubčić, Vedrana Radovanović, Josipa Vlainić, Patrick R. Hof, Nada Oršolić, Goran Šimić, and Maja Jazvinšćak Jembrek. PI3K/Akt and ERK1/2 Signalling Are Involved in Quercetin-Mediated Neuroprotection against Copper-Induced Injury. Oxid Med Cell Longev. 2020; 2020: 9834742.

Meyts PD. The Insulin Receptor and Its Signal Transduction Network. Endocrinology Book. South Dartmouth (MA): MDText.com, Inc.; 2016

Rahayu E.S., Dewi, NK., & Bodijantoro, FPMH. Profile of Elaeocarpus grandiflorus and Ziziphus mauritiana as identity plants of Salatiga and Tegal towns, Central Java Province, Indonesia. Journal of Physics : Conference Series. 2018; 983. Doi :10.1088/1742-6596/983/1

Sagala D. (2018). Deskripsi, Metabolit Sekunder Dan Kegunaan Anyang-anyang (elaeocarpus Grandiflorus J.E. Smith). INA-Rxiv. February 10. osf.io/preprints/inarxiv/3unv8

Sarian MN, Ahmed QU, Mat So’ad SZ, Alhassan AM, Murugesu S, Perumal V, Syed Mohamad SNA, Khatib A1 and Latip J. (2017). Antioxidant and Antidiabetic Effects of Flavonoids: A Structure-Activity Relationship Based Study. BioMed Research International 2017

Silva dos Santos J, Gonçalves Cirino JP, de Oliveira Carvalho P and Ortega MM (2021) The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front. Pharmacol. 11:565700. doi: 10.3389/fphar.2020.565700

Tseng H. L., Li C. J., Huang L. H., et al. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway. Toxicology and Applied Pharmacology. 2012;264(1):104–113. doi: 10.1016/j.taap.2012.07.022.

Vinayagam, R., and Xu, B. (2015). Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 12 (60(. https://doi.org/10.1186/s12986-015-0057-

Wijawati, N., Habibah, N. A., Musafa, F., Mukhtar, K., Anggraito, Y. U., & Widiatningrum, T. (2019). Pertumbuhan kalus rejasa (Elaeocarpus grandiflorus) dari eksplan tangkai daun pada Kondisi Gelap. Life Science, 8(1), 17–24.

Zhang Y and Liu D. (2011). Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology 670, Issue 1:325-332


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.