Visceral Organ Weight of Pengging Duck after the Addition of Nanochitosan as Feed Additive

Khevalin Kwardoyo(1), Sunarno Sunarno(2), Siti Muflichatun Mardiati(3),


(1) 1Departement of Biology, Diponegoro University Semarang. Jl. Prof. Jacob Rais, Kampus UNDIP Tembalang, Semarang 50275, Central Java, Indonesia
(2) 1Departement of Biology, Diponegoro University Semarang. Jl. Prof. Jacob Rais, Kampus UNDIP Tembalang, Semarang 50275, Central Java, Indonesia
(3) 1Departement of Biology, Diponegoro University Semarang. Jl. Prof. Jacob Rais, Kampus UNDIP Tembalang, Semarang 50275, Central Java, Indonesia

Abstract

The productivity of pengging ducks is determined by optimizing the function of the body's organs. The feed consumed greatly determines the growth and development of the internal organs in the pengging duck. Nanochitosan is a polysaccharide that has potential as a feed additive which functions to increase feed digestibility, nutrient absorption, promote growth to help optimize the function of visceral organs. This study aims to analyze the effect of nanochitosan as a feed additive on the function of the visceral organs of pengging ducks in terms of the weight of the visceral organs. The visceral organs studied included the ventriculus, intestines, liver, pancreas, spleen, and heart. This study was designed in a completely randomized design (CRD) consisting of 5 treatments (0; 2.5; 5; 7.5; 10 g nanochitosan/kg feed) with 5 replications. Nanochitosan feed additive treatment was given for 8 week. Variables that were measured in this study included weight of ventriculus, intestinal, liver, pancreas, spleen, and heart of pengging ducks. The research data showed that nanochitosan as a feed additive had no significant effect on visceral weight of pengging ducks (P>0.05). The conclusion of this study is that nanochitosan as a feed additive does not cause changes in the function of the visceral organs based on the indication of the weight of the visceral organs measured, namely the ventricles, intestines, liver, pancreas, spleen, and heart. The novelty of this research is the use of nanochitosan as a feed additive to improve the performance of penging ducks by maintaining the size of the visceral organs. It is hoped that the results of this research on nanochitosan feed additive can be used by local laying duck farms in Indonesia because it is safe and as an effort to improve the performance and productivity of ducks.

Keywords

feed additives; nanochitosan; pengging duck; standard feed; visceral organs

Full Text:

PDF

References

Ahmad, S., Khalique, A., Pasha, T. N., Mehmood, S., Hussain, K., Ahmad, S., Shaheen, M. S., Naeem, M., & Shafeq, M. (2017). Effect of Moringa oleifera (Lam.) pods as feed additive on egg antioxidants, chemical composition and performance of commercial layers. South African Journal of Animal Science, 47(6), 864-874.

Azizah, R. N., & Sjofjan, O. (2022). The Effect of using organik protein in feed on abdominal fat and internal organs of broiler. Bulletin of Animal Science, 46(3), 179-183.

Bonilla, F., Chouljenko, A., Lin, A., Young, B. M., Goribidanur, T. S., Blake, J. C., Bechtel, P. J., & Sathivel, S. (2019). Chitosan and water-soluble chitosan effects on refrigerated catfish fillet quality. Foof Science, 31. Doi.org/10.1016/j.fbio.2019.100426.

Costa-Silva, T. A., Carvalho, A. K. F., Souza, C. R. F., De Castro, H. F., Bachmann, L., Said, S., & Oliveira, W. P. (2021). Enhancement lipase activity via immobilization onto chitosan beads used as seed particles during fluidized bed drying: Application in butyl butyrate production. Applied Catalysis, 622, Doi.org/10.1016/j.apcata.2021.118217.

Ebruaja, A. S., Onunkwo, D. N., Odukwe, C. N., & Onuachu. J. C. (2020). Performance of broiler chickens fed raw jackfruit seed meal (Artocarpus heterophyllus). Nigerian Journal of Animal Production, DOI: 10.51791/njap.v44i2.995.

Ekaputri, R. A., Arief, M., & Rahardja, B. S. (2018). Effect of chitosan supplementation in commercial feed for specific growth rate and protein retention of Litopenaeus vannamei. Journal of Marine and Coastal Science, 7(2), 39-50.

El-Ashram, S., Abdelhafez, G. A., & Farroh, K. Y. (2020). Effects of nanochitosan supplementation on productive performance of japanese quail. Journal of Applied Poultry Research, 29(4), 917-929.

El-Fattah, H. M., Abdel-Kader, Z. M., Hassnin, E. A., El-Rahman, M. K., & Hassan. (2013). Chitosan as a hepato-protective agent against single oral dose of dioxin. Journal of Environmental Science, Toxicology, and Food Technology, 7(3), 11-17.

Falasifah, Sunarno, S., Djaelani, M. A., & Rahadian, R (2018). Pegagan and cinnamon bark flours as a feed supplement for quail growth rate (Coturnix coturnix). IOP Conf. Series: Journal of Physics: Conf. Series, 1025 (2018) 012047, Doi :10.1088/1742-6596/1025/1/012047.

Firdamayanti, F., Suherman, S., & Jura, M. R. (2019). Utilization of chitosan as an animal feed supplement and its effect on fattening of organic rooste (Gallus domestica). J. Akademika Kimia, 8(1), 23-27.

Hassan, F. A., El-Maged, Marwa, H. A., El-Halim, Hassan, A. S., & Ramadan, G. (2021). Effect of dietary chitosan, nano-chitosan supplementation and different japanese quail lines on growth performance, plasma constituents, carcass characteristics, antioxidant status and intestinal microflora population. Journal of Animal Health and Production, 9(2), 119-131.

Jiang, Y., Fu, C., Liu, G., Guo, J., Xiu, L., & Su., Z. (2018). Cholesterol-lowering effects and potential mechanisms of chitooligosaccharide capsules in hyperlipidemic rats. Food and Nutrition Research, 62, 1-15.

Junianto, Oktaviola, E. K., Putri, L. A., & Fauzi, M. (2021). Application of Chitosan for Fish Preservation and Processed Products. Global Scientific Journals, 9(6), 1122-1135.

Khattab, A. A. A., El-Basuini, M. F. M., El-Ratel, I. T., & Fouda, S. F. (2021). Dietary probiotics as a strategy for improving growth performance, intestinal efficacy, immunity, and antioxidant capacity of white Pekin ducks fed with different levels of CP. Poultry Science, 100(3), Doi.org/10.1016/j.psj.2020.11.067.

Kusmayadi, A., Bachtiar, K. R., & Prayitno, C. H. (2019). The effects of mangosteen peel (Garcinia mangostana L.) and turmeric (Curcuma domestica Val) flour dietary supplementation on the growth performance, lipid profile, and abdominal fat content in Cihateup ducks. Veteriner World, 12(3), 402-408.

Lakkawar A. W., Narayanaswamy, H. D., & Satyanarayana, M. L. (2017). Biochemical alterations in aflatoxicosis and its amelioration using diatomacious earth as toxin binder in broilers. European Journal Biomedical and Pharmaceutical Science, 4, 411-419.

Lestari, E., Sunarno., Kasiyati., & Djaelani, M. A. (2020). Efek bahan aditif tepung kelor terhadap biomassa organ visceral ayam petelur jantan. Media Bina Ilmiah, 14(9), 3215-3230.

Miao, Z., Zhao, W., Guo, L., Wang, S., & Zhang, J. (2020). Effects of dietary supplementation of chitosan on immune function in growing huoyan geese. Poultry Science, 99(1), 95-100.

Minqi, W., Shanshan, Yongjie, Y. D., Wenjing, T., & Xiaoli, X. (2011). Chitosan nanoparticles loaded copper ions affect growth performance, immunity and antioxidant indices of weaned piglets. Chin. J. Anim. Nutr, 23, 1806-1811.

Miyazawa, N., Yoshimoto, H., Kurihara, S., Hamaya, T., & Eguchi, F. (2018). Improvement of diet-induced obesity by ingestion of mushroom chitosan prepared from Flammulina velutipes. Journal of Oleo Science, 67(2), 245-254.

Nova, T. D., Syahruddin, E., & Zein, R. (2020). The productivity of duck in different temperature cage management. Jurnal Natur Indonesia, 18(1), 43.

Priyanka, D. N., Prashanth, K. V. H., & Tharanathan, R. N. (2022). A review on potential anti-diabetic mechanisms of chitosan and its derivatives. Carbohydrate Polymer Technologies and Applications, 10(1), 88.

Sahara, E., Sandi, S., & Yossi, F. (2019). The effect of fermentation bran and chitosan in ration to percentage of tegal duck digestive tract weight. Indonesian Journal of Fundamental and Applied Chemistry, 4(1), 25-28.

Santoso, S. (2018). Menguasai Statistik dengan SPSS 25. Gramedia.

Saraswati, L. D., Widjanarko, B., Herawati, V. E., & Fauziah, A. S. (2022). The Effects of chitosan-peg nanoparticles based on channa striata protein hydrolyzate on decreasing diabetes mellitus in diabetic rats. Ethiopian Journal of Health Science, 32(4), 833-840.

Sugiharto, S., Pratama, A. R., & Yudiarti, T. (2021). Growth performance of broiler chickens fed on sprouted-papaya seed based diets. International Journal of Veterinary Sience and Medicine, 9(1), 62-64.

Sunarno, S., Solikhin, S., & Budiraharjo, K. (2021). Histomorphometry of the duodenum of ducks (Anas platyrhyncos) after administration of nanochitosan in feed. Biosaintifika: Journal of Biology & Biology Education, 13(3), 267-274.

Sunder, J., Tamilvanan, S., & Kundu, A. (2015). Efficacy of feeding of Morinda citrifolia Fruit juice and Lactobacillus acidophilus in broiler. Asian Journal of Animal and Veterinary Advances, 10(8), 352-359.

Tomasi, T. E., Anderson, B. N., & Garland, T. J. (2019). Ecophysiology of mammals. Journal of Mammology, 100(3), 894-909.

Tufan, T., & Arslan, C. (2021). Dietary supplementation with chitosan oligosaccharide affects serum lipids and nutrient digestibility in broilers. South African Journal of Animal Sciences, 50(5), 664-671.

Vimal, S., Abdul Majeed, S., Taju, G., Nambi, K. S. N., Sundar Raj, N., Madan, N., Farook, M. A., Rajkumar, T., Gopinath, D., & Sahul Hameed, A. S. (2013). Chitosan tripolyphosphate (cs/tpp) nanoparticles: preparation, characterization and application for gene delivery in shrimp. Acta Tropica, 128(3), 486-493.

Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao., K. (2020). Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci, 21(2), 487.

Wasilewski, R., Kokoszyński, D., Mieczkowska, A., Bernacki, Z., & Górska., A. (2015). Structure of the digestive system of ducks depending on sex and genetic background. Acta Veterinaria Brno, 84(2), 153-158.

Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules, 26(23), 7136.

Yang, S. L., Yang, R. C., Zhou, X., Yang, S. H., Luo, L. L., You, Y. C., & Boonanuntan, S. (2020). Effects of feeding diets with processed Moringa oleifera stem meal on growth and laying performance, and immunological and antioxidant activities in laying ducks. Poultry Science, 99(7), 3445-3451.

Zulfan, Z., Fitri, C. A., Husna, A., & Siapudan, N. (2023). Carcass and cooked meat acceptance of broilers chickens fed the diet containing fermented Moringa with the addition corn and fishmeal. Bulletin of Animal Science, 47(2), 96-103.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.