Polyketide Synthase Gene Domain Exploration of Marine Sponge Symbiont Bacteria Collected From Weh Island

Sukmawan Fajar Santosa(1), Nazaruddin Nazaruddin(2), Wahyu Eka Sari(3), Febriani Febriani(4),


(1) Integrated Research Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia Chemistry Department, Faculty of mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia
(2) Chemistry Department, Faculty of mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia
(3) Integrated Research Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
(4) Chemistry Department, Faculty of mathematics and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia

Abstract

Sponges have long been known as a source for isolating secondary metabolites. These natural compounds are biosynthetic products of symbiont bacteria from various phyla colonizing sponge tissue. Some symbiont bacteria are known to produce bioactive compounds that would have antibacterial activity, such as polyketide, due to competition in colonizing and obtaining nutrients from their hosts. In general, this study aims to explore the biosynthetic potential of seven sponge-symbiont bacteria by detecting the gene domain involved in the production of polyketide compounds. Sponge-symbiont bacteria isolation was carried out on one species of sponge collected from a depth of ±15 m in the Iboih area, Weh Island, Aceh Province, Indonesia. The bacteria was allowed to grow in Sea Water Complete agar medium and incubated at 280C for 10-14 days. The production of polyketide compounds involves the enzyme polyketide synthase (PKS). Polyketide synthase was detected by detecting the encoding gene domain involved in the production of polyketide compounds using PCR method. Five of the seven isolates of sponge symbiont bacteria were detected to contain the PKS gene domain. Furthermore, molecular identification confirm by 16S rRNA sequencing showed that the isolates belonged to the phylum Firmicutes and Actinobacteria. The result indicated that the sponge symbiont bacteria collected from Weh Island had the biosynthetic potential to produce polyketide compounds. These compounds would have antimicrobial activities that will play a major role in the medical field. Research related to screening PKS genes in marine sponge symbionts bacteria from Weh Island has never been reported before, thus adding to the novelty of this research.

Keywords

Marine Sponge; symbion bacteria; Actinobacteria; 16S rRNA; PKS gene domain

Full Text:

PDF

References

Abdelmohsen, U. R., Pimentel-Elardo, S. M., Hanora, A., Radwan, M., Abou-El-Ela, S. H., Ahmed, S., & Hentschel, U. (2010). Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes. Marine Drugs 2010, Vol. 8, Pages 399-412, 8(3), 399–412. https://doi.org/10.3390/MD8030399

Abdelmohsen, U. R., Yang, C., Horn, H., Hajjar, D., Ravasi, T., & Hentschel, U. (2014). Actinomycetes from red sea sponges: Sources for chemical and phylogenetic diversity. Marine Drugs, 12(5), 2771–2789. https://doi.org/10.3390/md12052771

Anderson, A., Clark, D., Gibbons, P., & Sigmund, J. (2002). The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes. Journal of Industrial Microbiology and Biotechnology, 29(2), 60–69. https://doi.org/10.1038/sj.jim.7000260

Ayuso-Sacido, A., & Genilloud, O. (2005). New PCR Primers for the Screening of NRPS and PKS-I Systems in Actinomycetes: Detection and Distribution of These Biosynthetic Gene Sequences in Major Taxonomic Groups. Microbial Ecology, 49(1), 10–24. https://doi.org/10.1007/s00248-004-0249-6

Bahri, S., Rudi, E., & Dewiyanti, I. (2015). Kondisi terumbu karang dan makro invertebrata di Perairan Ujong Pancu, Kecamatan Peukan Bada, Aceh Besar. DEPIK, 4(1). https://doi.org/10.13170/depik.1.1.2278

Barber, P. H., & Bellwood, D. R. (2005). Biodiversity hotspots: evolutionary origins of biodiversity in wrasses (Halichoeres: Labridae) in the Indo-Pacific and new world tropics. Molecular Phylogenetics and Evolution, 35(1), 235–253. https://doi.org/10.1016/j.ympev.2004.10.004

Bergmann, W., & Feeney, R. J. (1951). Contributions to The Study of Marine Products. XXXII. The Nucleosides of Sponges. I. The Journal of Organic Chemistry, 16(6), 981–987. https://doi.org/10.1021/jo01146a023

Bibi, F., Faheem, M., Azhar, E., Yasir, M., Alvi, S., Kamal, M., Ullah, I., & Naseer, M. (2016). Bacteria From Marine Sponges: A Source of New Drugs. Current Drug Metabolism, 18(1), 11–15. https://doi.org/10.2174/1389200217666161013090610

Blunt, J. W., Munro, M. H. G., Battershill, C. N., Copp, B. R., Mccombs, J. D., Perry, N. B., Prinsep, M., & Thompson, A. M. (1990). From the Antarctic to the antipodes; 45° of marine chemistry. In International symposium on marine natural products. 06 (Dakar 1989-07-03) (Vol. 14, Issue 10, pp. 15–761). CNRS, Paris.

Bright, M., & Bulgheresi, S. (2010). A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology, 8(3), 218–230. https://doi.org/10.1038/nrmicro2262

Dhakal, D., Sohng, J. K., & Pandey, R. P. (2019). Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microbial Cell Factories 2019 18:1, 18(1), 1–22. https://doi.org/10.1186/S12934-019-1184-Z

Fadli, N., Muchlisin, Z. A., Soraya, I., Dewiyanti, I., Purnawan, S., El-Rahimi, S. A., Sofyan, H., Affan, M., & Siti-Azizah, M. N. (2019). The diversity of marine macroinvertebrates in Aceh Besar waters, Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 348, 012076. https://doi.org/10.1088/1755-1315/348/1/012076

Fastawa, Fuad, Z., & Hidayati, F. (2016). Komposisi jenis dan kepadatan populasi porifera di kawasan konservasi sublitoral Rinon Pulo Breuh Kecamatan Pulo Aceh Kabupaten Aceh Besar. Prosiding Seminar Nasional Biotik 2016, 34–46.

Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T., & West, S. A. (2017). The evolution of host-symbiont dependence. Nature Communications, 8(1), 15973. https://doi.org/10.1038/ncomms15973

Ford, J., & Capon, R. J. (2000). Discorhabdin R: A New Antibacterial Pyrroloiminoquinone from Two Latrunculiid Marine Sponges, Latrunculia sp. and Negombata sp. Journal of Natural Products, 63(11), 1527–1528. https://doi.org/10.1021/np000220q

Kim, T. K., Hewavitharana, A. K., Shaw, P. N., & Fuerst, J. A. (2006). Discovery of a New Source of Rifamycin Antibiotics in Marine Sponge Actinobacteria by Phylogenetic Prediction. Applied and Environmental Microbiology, 72(3), 2118–2125. https://doi.org/10.1128/AEM.72.3.2118-2125.2006

Kurnia, N. M., Uria, A. R., Kusnadi, Y., Dinawati, L., Zilda, D. S., Hadi, T. A., Setyahadi, S., & Felix, F. (2017). Metagenomic Survey of Potential Symbiotic Bacteria and Polyketide Synthase Genes in an Indonesian Marine Sponge. HAYATI Journal of Biosciences, 24(1), 6–15. https://doi.org/10.1016/j.hjb.2017.04.004

Makarieva, T. N., Tabakmaher, K. M., Guzii, A. G., Denisenko, V. A., Dmitrenok, P. S., Shubina, L. K., Kuzmich, A. S., Lee, H.-S., & Stonik, V. A. (2011). Monanchocidins B–E: Polycyclic Guanidine Alkaloids with Potent Antileukemic Activities from the Sponge Monanchora pulchra. Journal of Natural Products, 74(9), 1952–1958. https://doi.org/10.1021/np200452m

Marty, M. J., Vicente, J., Oyler, B. L., Place, A., & Hill, R. T. (2017). Sponge symbioses between Xestospongia deweerdtae and Plakortis spp. are not motivated by shared chemical defense against predators. PLOS ONE, 12(4), e0174816. https://doi.org/10.1371/journal.pone.0174816

Matcher, G. F., Waterworth, S. C., Walmsley, T. A., Matsatsa, T., Parker-Nance, S., Davies-Coleman, M. T., & Dorrington, R. A. (2017). Keeping it in the family: Coevolution of latrunculid sponges and their dominant bacterial symbionts. MicrobiologyOpen, 6(2), e00417. https://doi.org/10.1002/mbo3.417

Nivina, A., Yuet, K. P., Hsu, J., & Khosla, C. (2019). Evolution and Diversity of Assembly-Line Polyketide Synthases. Chemical Reviews, 119(24), 12524–12547. https://doi.org/10.1021/acs.chemrev.9b00525

Palomo, S., González, I., De La Cruz, M., Martí, J., Rubé N Tormo, J., Anderson, M., Hill, R. T., Vicente, F., Reyes, F., & Genilloud, O. (2013). Sponge-Derived Kocuria and Micrococcus spp. as Sources of the New Thiazolyl Peptide Antibiotic Kocurin. Mar. Drugs, 11, 1071–1086. https://doi.org/10.3390/md11041071

Paul, S. I., Rahman, M. M., Salam, M. A., Khan, M. A. R., & Islam, M. T. (2021). Identification of marine sponge-associated bacteria of the Saint Martin’s island of the Bay of Bengal emphasizing on the prevention of motile Aeromonas septicemia in Labeo rohita. Aquaculture, 545, 737156. https://doi.org/10.1016/J.AQUACULTURE.2021.737156

Rini, A. F., Yuhana, M., & Wahyudi, A. T. (2017). Potency of sponge-associated bacteria producing bioactive compounds as biological control of vibriosis on shrimp. Jurnal Akuakultur Indonesia, 16(1), 41. https://doi.org/10.19027/jai.16.1.41-50

Schirmer, A., Gadkari, R., Reeves, C. D., Ibrahim, F., DeLong, E. F., & Hutchinson, C. R. (2005). Metagenomic Analysis Reveals Diverse Polyketide Synthase Gene Clusters in Microorganisms Associated with the Marine Sponge Discodermia dissoluta. Applied and Environmental Microbiology, 71(8), 4840–4849. https://doi.org/10.1128/AEM.71.8.4840-4849.2005

Schneemann, I., Nagel, K., Kajahn, I., Labes, A., Wiese, J., & Imhoff, J. F. (2010). Comprehensive Investigation of Marine Actinobacteria Associated with the Sponge Halichondria panicea. Applied and Environmental Microbiology, 76(11), 3702. https://doi.org/10.1128/AEM.00780-10

Thacker, R. W., & Starnes, S. (2003). Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Marine Biology, 142(4), 643–648. https://doi.org/10.1007/s00227-002-0971-x

Vicente, J., Stewart, A., Song, B., Hill, R. T., & Wright, J. L. (2013). Biodiversity of Actinomycetes Associated with Caribbean Sponges and Their Potential for Natural Product Discovery. Marine Biotechnology 2013 15:4, 15(4), 413–424. https://doi.org/10.1007/S10126-013-9493-4

Wang, G. (2006). Diversity and biotechnological potential of the sponge-associated microbial consortia. Journal of Industrial Microbiology & Biotechnology, 33(7), 545–551. https://doi.org/10.1007/s10295-006-0123-2

Zhu, W., Li, J., Wang, X., Yang, J., Lu, S., Lai, X. H., Jin, D., Huang, Y., Zhang, S., Pu, J., Zhou, J., Ren, Z., Huang, Y., Wu, X., & Xu, J. (2020). Actinomyces Wuliandei sp. nov., Corynebacterium liangguodongii sp. nov., Corynebacterium yudongzhengii sp. nov. and oceanobacillus zhaokaii sp. nov., isolated from faeces of tibetan antelope in the Qinghai-Tibet Plateau of China. International Journal of Systematic and Evolutionary Microbiology, 70(6), 3763–3774. https://doi.org/10.1099/IJSEM.0.004232/CITE/REFWORKS

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.