Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10

Tri Handayani Kurniati(1), Iman Rusmana(2), Ani Suryani(3), Nisa Rachmania Mubarik(4),


(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta. Jl, Pemuda no 10. East Jakarta 13220. Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University. Jl. Raya Darmaga, Bogor 16680, West Java. Indonesia
(3) Department of Industrial Technology, Faculty of Agriculture Technology, Bogor Agricultural University Jl. Raya Darmaga, Bogor 16680, West Java. Indonesia
(4) Department of Biology, Faculty of Mathematics and Natural Sciences, Jl. Raya Darmaga, Bogor 16680, West Java. Indonesia

Abstract

Pyrene degradation and biosurfactant activity by a new strain identified as Gordonia cholesterolivorans AMP 10 were studied. The strain grew well and produced effective biosurfactants in the presence of glucose, sucrose, and crude oil. The biosurfactants production was detected by the decreased surface tension of the medium and emulsification activity.  Analysis of microbial growth parameters showed that AMP10 grew best at 50 µg mL-1 pyrene concentration, leading to 96 % degradation of pyrene within 7 days. The result of nested PCR analysis revealed that this isolate possessed the nahAc gene which encodes dioxygenase enzyme for initial degradation of Polycyclic Aromatic Hydrocarbon (PAH). Observation of both tensio-active and emulsifying activities indicated that biosurfactants which produced by AMP 10 when grown on glucose could lower the surface tension of medium from 71.3 mN/m to 24.7 mN/m and formed a stable emulsion in used lubricant oil with an emulsification index (E24) of 74%. According to the results, it is suggested that the bacterial isolates G. cholesterolivorans AMP10 are suitable candidates for bioremediation of PAH-contaminated environments.

How to Cite

Kurniati, T. H.,  Rusmana, I. Suryani, A. & Mubarik, N. R. (2016). Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10. Biosaintifika: Journal of Biology & Biology Education, 8(3), 336-343. 

Keywords

biosurfactant; emulsification index (E24); G. cholesterolivorans; pyrene; surface tension

Full Text:

PDF

References

Ahmad, F. (2012). Kandungan senyawa polisiklik aromatik hidrokarbon (PAH) di teluk Jakarta. Ilmu Kelautan. 17(4), 199-208.

Ahmed, A. T., Othman, M. A., Sarwade, V. D. & Gawai, K. R. (2012). Degradation of anthracene by alkaliphilic bacteria Bacillus badius. Environ Pollut, 1(2), 97-104.

Aparna, A., Srinikethan, G. & Hegde, S. (2012). Isolation, screening and production of biosurfactant by Bacillus clausii 5B. Res Biotechnol, 3(2), 49-56.

Arenskötter, M., Bröker, D. & Steinbüchel, A. (2004). Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol, 70(6), 3195-3204.

Banat, I. M., Makkar, R. S, & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol, 53(5), 495-508.

Bodour A. A., Guerrero-Barajas, C., Jiorle, B. V., Malcomson, M. E., Paull, A. K., Somogyi, A., Trinh, L. N., Bates, R. B. & Maier, R. M. (2004). Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Appl Environ Microbiol, 70(1), 114-120.

Cooper, D. G. & Zajic, J. E. (1980). Surface-active compounds from microorganisms. Adv Appl Microbiol, 26, 229-253.

Ceyhan, N. (2012). Biodegradation of pyrene by a newly isolated Proteus vulgaris. Sci Res Essays, 7(1), 66-77.

Cheng, K. B., Jian, Z. & Wang, Z. (2008). Emulsification properties of bacterial biosurfactants native to the Yellow River delta on hexadecane and diesel oil. Biotechnol, 7, 360-370.

Das, N. & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int, 2011, 1–13.

Dong, C. D., Chen, C. F., & Chen, C. W. (2012). Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. Int J Environ Res Public Health, 9(6), 2175-2188.

Drzyzga, O., Llorens, J. M. N., de las Heras, L. F., Fernández, E. G., & Perera, J. (2009). Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol, 59(5), 1011-1015.

Ferhat, S., Mnif, S., Badis, A., Eddouaouda, K., Alouaoui, R., Boucherit, Mhiri N, Moulay-Mostefa N. & Sayadi, S. (2011). Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils. Int Biodeter Biodegr, 65(8), 1182-1188.

Fernández-Luqueño, F., Valenzuela-Encinas, C., Marsch, R., Martínez-Suárez, C., Vázquez-Núñez, E., & Dendooven, L. (2011). Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ Sci Pollution Res, 18(1), 12-30.

Franzetti, A., Caredda, P., Ruggeri, C., La Colla, P., Tamburini, E., Papacchini, M. & Bestetti, G. (2009). Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere, 75(6), 801-807.

Guo, C., Dang, Z., Wong, Y., & Tam, N. F. (2010). Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. Int Biodeter Biodegr, 64(6), 419-426.

Heitkamp, M. A., Franklin, W., & Cerniglia, C. E. (1988). Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol, 54(10), 2549-2555.

Jahangeer & Kumar, V. (2013). An Overview on Microbial Degradation of Petroleum Hydrocarbon Contaminants. Int J Eng Tech Res, 1(8), 34-37.

Kafilzadeh, F., Hoshyaripour, F., Tahery, Y., Azad, H. N. (2012). Bioremediation of pyrene by isolated bacterial strains from the soil of the landfills in Shiraz (Iran). Ann Biol Res, 3(1), 486-494.

Kapadia S. G. & Yagnik B. N. (2013). Current trend and potential of microbial biosurfactants. Asian J Exp Biol Sci, 4(1),1-8.

Kazunga, C., & Aitken, M. D. (2000). Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol, 66(5), 1917-1922.

Kim, S. J., Kweon, O., Jones, R. C., Freeman, J. P., Edmondson, R. D., & Cerniglia, C. E. (2007). Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol, 189(2), 464-472.

Kumar, M., Leona, V., Materano, A. D. S., Ilzins, O. A., Castro, I. G. & Fuenmayor, S. L. (2006). Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z Naturforsch, 61(3-4), 203-212.

Luan, T.G., Yu, K.S.H., Zhong, Y., Zhou, H.W., Lan, C.Y. & Tam, N.F.Y. (2006). Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere, 65(11), 2289–2296.

Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J. & Wade, W. G. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol, 64(2), 795- 799.

Park, J. W., & Crowley, D. E. (2006). Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils. Appl Microbiol Biotechnol, 72(6), 1322-1329.

Rashedi, H., Jamshidi, E., Assadi, M. M, & Bonakdarpour, B. (2006). Biosurfactant production with glucose as a carbon source. Chem Biochem Eng Q, 20(1), 99-106.

Sarma, P. M., Bhattacharya, D., Krishnan, S., & Lal, B. (2004). Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl Environ Microbiol, 70(5), 3163-3166.

Sneha, K. S., Padmapriya, B., & Rajeswari, T. 2012. Isolation and screening of biosurfactants produced by Pseudomonas aeruginosa from oil spilled soils. Int J Pharm Biol Arch, 3(2), 321-325.

Shokrollahzadeh, S., Golmohammad, F., & Shokouhi, H. (2012). Study of Sphingopyxis Isolates in Degradation of Polycyclic Aromatic Hydrocarbons. Chem Eng Trans, 27, 55-60.

Viramontes-Ramos, S., Portillo-Ruiz, M. C., Ballinas-Casarrubias, M.D.L., Torres-Muñoz, J.V., Rivera-Chavira, B.E. & Nevárez-Moorillón, G.V. (2010). Selection of biosurfactant/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Braz J. Microbiol, 41(3), 668-675.

Walter,V., Syldatk, C, & Hausmann, R. (2010). Screening Concepts for the Isolation of Biosurfactant Producing Microorganisms. Adv Exp Med Biol 672, 1-13.

Wang, Z., Liu, Z., Xu, K., Mayer, L. M., Zhang, Z., Kolker, A. S., & Wu, W. (2014). Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico. Geochem Trans, 15(1), 1-12.

Wijanarko, A., Yuliani, H., Hermansyah, H., & Sahlan, M. (2012). Isolation and properties characterization of biosurfactant synthesized by pyrene degrading Bacillus subtilis C19. J. Chem. Chem. Eng, 6(10), 889-896.

Willumsen, P.A., & Karlson, U. (1996). Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodeg, 7(5), 415-423.

Yuliani, H. A., Hermansyah, H. E., Sahlan, M. U., & Wijanarko A. N. (2012). Dioxygenase gene of PAHs degrading Bacillus strains isolated from marine Indonesian environment and its biosurfactant production ability. Int J Pharm Bio Sci, 3(4), 380-390.

Zhou, H. W., Guo, C. L., Wong, Y. S., & Tam, N. F. Y. (2006). Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett, 262(2), 148-157.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.