PREDIKSI DEBIT JANGKA PANJANG UNTUK SUNGAI BENGAWAN SOLO

Marliana Tri Widyastuti(1), Muh Taufik(2), I Putu Santikayasa(3),


(1) Divisi Hidrometeorologi, Departemen Geofisika dan Meteorologi, FMIPA-IPB
(2) Divisi Hidrometeorologi, Departemen Geofisika dan Meteorologi, FMIPA-IPB
(3) Divisi Hidrometeorologi, Departemen Geofisika dan Meteorologi, FMIPA-IPB

Abstract

Sungai Bengawan Solo merupakan sungai terpanjang di Pulau Jawa dimana daerah alirannya telah diklasifikasikan sebagai salah satu Daerah Aliran Sungai (DAS) kritis di Indonesia. Penelitian ini mencoba memprediksi debit jangka panjang Sungai Bengawan Solo, dengan tujuan khusus untuk (i) melakukan kalibrasi dan validasi model Soil and Water Assessment Tool (SWAT) dalam mengestimasi debit skala bulanan, dan (ii) mensimulasikan debit bulanan untuk periode 1901 – 2016. Penelitian ini, model SWAT menggunakan input data iklim bulanan, penggunaan lahan, dan karakteristik tanah. Berdasarkan hasil evaluasi, secara statistik model mampu mensimulasikan debit bulanan dengan baik ditunjukkan dengan nilai yang rendah dari percent bias (PBIAS: -2.30%) dan RMSE standard ratio (RSR: 0.44), dan nilai Kling-Gupta Efficiency yang tinggi (KGE: 0.87). Berdasarkan debit hasil simulasi, kami menemukan bahwa debit maksimum terjadi pada bulan Maret, sedangkan debit minimum terjadi pada bulan Agustus. Karakteristik debit bulanan Sungai Bengawan Solo untuk aliran tinggi (Q5) sebesar 198.00 mm/bulan, sedangkan aliran rendah (Q90) sebesar 13.00 mm/bulan. Informasi tentang karakteristik hidrologi sungai sangat penting untuk pengelolaan DAS terpadu, terutama untuk mengantisipasi iklim yang sering berubah.

Keywords

Debit Bulanan, CRU, Hydrologic Response Unit, Kalibrasi, SWAT

References

Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B., 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524, 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

Amatya, M.D., G. Rossi, C., Saleh, A., Dai, Z., A. Youssef, M., G. Williams, R., D. Bosch, D., M. Chescheir, G., Sun, G., Wayne Skaggs, R., C. Trettin, C., D. Vance, E., E. Nettles, J., Tian, S., 2013. Review of Nitrogen Fate Models Applicable to Forest Landscapes in the Southern U.S. Transactions of the ASABE 56, 1731–1757. https://doi.org/10.13031/trans.56.10096

Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B., Neitsch, S.L., 2012. Soil & Water Assessment Tool: Input/Output Documentation. Version 2012.

Dwarakish, G.S., Ganasri, B.P., 2015. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience 1, 1115691. https://doi.org/10.1080/23312041.2015.1115691

Elfert, S., Bormann, H., 2010. Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland ‘Hunte’ catchment. Journal of Hydrology 383, 245–255. https://doi.org/10.1016/j.jhydrol.2009.12.040

Fadil, A., Rhinane, H., Kaoukaya, A., Kharchaf, Y., Bachir, O.A., 2011. Hydrologic Modeling of the Bouregreg Watershed (Morocco) Using GIS and SWAT Model. Journal of Geographic Information System 03, 279–289. https://doi.org/10.4236/jgis.2011.34024

Harris, I., Jones, P. d., Osborn, T. j., Lister, D. h., 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642. https://doi.org/10.1002/joc.3711

Jha, M.K., 2011. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis. Water 3, 604–617. https://doi.org/10.3390/w3020604

Lasminto, U., Lumantara, E., Widyastuti, H., 2016. FLOOD ASSESSMENT OF BENGAWAN SOLO RIVER 11, 8.

Marhaento, H., Booij, M.J., Hoekstra, A.Y., 2017a. Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia. Hydrology Research 48, 1143–1155. https://doi.org/10.2166/nh.2016.110

Marhaento, H., Booij, M.J., Rientjes, T.H.M., Hoekstra, A.Y., 2017b. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes 31, 2029–2040. https://doi.org/10.1002/hyp.11167

Meaurio, M., Zabaleta, A., Uriarte, J.A., Srinivasan, R., Antigüedad, I., 2015. Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. Journal of Hydrology 525, 326–334. https://doi.org/10.1016/j.jhydrol.2015.03.050

Menteri Pekerjaan Umum, 2010. Keputusan Menteri Pekerjaan Umum Nomor 266/KPTS/M/2010 tentang Pola Pengelolaan Sumber Daya Air (SDA) Wilayah Sungai Bengawan Solo.

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Binger, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50, 885–900. https://doi.org/10.13031/2013.23153

Pechlivanidis, I.G., Arheimer, B., 2015. Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrology and Earth System Sciences 19, 4559–4579. https://doi.org/10.5194/hess-19-4559-2015

Prastica, R.M.S., Maitri, C., Hermawan, A., Nugroho, P.C., Sutjiningsih, D., Anggraheni, E., 2018. Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city. IOP Conference Series: Materials Science and Engineering 316, 012042.

Priyantoro, D., Limantara, L.M., 2017. Conformity evaluation of synthetic unit hydrograph (case study at upstream Brantas sub watershed, East Java Province of Indonesia). Journal of Water and Land Development 35. https://doi.org/10.1515/jwld-2017-0082

Qiang, C., Si, G., Dayong, Q., Zuhao, Z., 2010. Analysis of SWAT 2005 Parameter Sensitivity with LH-OAT Method. HKIE Transactions 17, 1–7. https://doi.org/10.1080/1023697X.2010.10668197

R Core Team., 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., Hauck, L.M., 2001. VALIDATION OF THE SWAT MODEL ON A LARGE RWER BASIN WITH POINT AND NONPOINT SOURCES1. JAWRA Journal of the American Water Resources Association 37, 1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x

Santhi, C., Kannan, N., Arnold, J.G., Di Luzio, M., 2008. Spatial Calibration and Temporal Validation of Flow for Regional Scale Hydrologic Modeling1. JAWRA Journal of the American Water Resources Association 44, 829–846. https://doi.org/10.1111/j.1752-1688.2008.00207.x

Setyorini, A., Khare, D., Pingale, S.M., 2017. Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia. Applied Geomatics 9, 191–204. https://doi.org/10.1007/s12518-017-0193-z

Sipayung, S.B., Nurlatifah, A., Siswanto, B., 2018. Simulation and prediction the impact of climate change into water resources in Bengawan Solo watershed based on CCAM (Conformal Cubic Atmospheric Model) data. Journal of Physics: Conference Series 1022, 012042.

Srinivasan, R., 2012. ArcSWAT: ArcGIS interface for SWAT.

Zhang, W., Mu, S., Zhang, Y., Chen, K., 2012. Seasonal and interannual variations of flow discharge from Pearl River into sea. Water Science and Engineering 5, 399–409. https://doi.org/10.3882/j.issn.1674-2370.2012.04.004

Refbacks

  • There are currently no refbacks.