ESTIMASI TINGKAT KERAWANAN DEMAM BERDARAH DENGUE BERBASIS INFORMASI GEOSPASIAL

Arwan Putra Wijaya, Abdi Sukmono

Abstract

Dengue fever is a type of infectious diseases, which often lead to extraordinary events in Indonesia. Kendal is one area which every year has increased the spread of Dengue quite rapidly. The increase in the spread of Dengue in Kendal is largely determined by the decisions taken by the relevant agencies, especially the Department of Health. Prediction incidence of Dengue Fever in Kendal, is still processed manually by the presentation is still limited in the form of tables and graphs, while the presentation in the form of a map has not been done. Rapid changes in land use from agricultural areas into non agricultural areas became one of the causes of the rapid changes in the data.

One technology that can provide information on land use and settlement patterns are analyzed with remote sensing. Data from remote sensing, and then combined with several other parameters, such as population density (X1), height of the sea surface (X2), Distance settlement with nearby river (X3) and Distance pemukiaman to the nearest health center (X4) with spatial analysis Geographic Information System (GIS) will be obtained quickly forecast the vulnerability of Dengue Fever.

The result showed that the the vulnerability of Dengue fever based spatial analysis Geographic Information System (GIS) scoring method in Kendal in 2015 is divided into three (3) classes, ie areas with low vulnerability level (51297.96 ha / 51, 08%), areas with middle vulnerability level (45176.44 ha / 44, 38%), and areas with high vulnerability level (3947.534 ha / 3, 93 %).

Keywords

Dengue fever; Remote sensing; GIS

Full Text:

PDF

References

Handayani, Dewi dkk, 2005. Pemanfaatan analisis spasial untuk pengolahan data spasial Sistem Informasi Geografis. Jurnal Teknologi Informasi DINAMIK Volume X No. 2 Mei 2005 : 108 116. Semarang

Khormi, Hassan M. & Kumar, lalit. 2011 Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups : GIS and remote sensing based case study. Science of The Total Environment. Volume 409, Issue 22, 15 October 2011, Pages 47134719

Marini, Yennie dkk. 2014. Perbandingan Metode Klasifikasi Supervised Maximum likelihood dengan klasifikasi berbasis objek untuk inventarisasi lahan tambak di Kabupaten Maros. Prosiding Seminar Nasional Penginderaan Jauh 2014 : Deteksi parameter geobiofisik dan diseminasi Penginderaan Jauh : 505 516

Pohekar, S.D. & Ramachandran, M. 2004. Application of multi criteria decision making to sustainable energy planning A review. Renewable and sustainable energy review. Volume 8, Issue 4, August 2004, Pages 365381

Raina, H. & Shafi, O. 2015. Analysis Of Supervised Classification Algorithms. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 09, SEPTEMBER 2015 : 440 443.

Rifada & Purhadi, 2011. Pemodelan Tingkat Kerawanan Demam Berdarah Dengue Di Kabupaten Lamongan Dengan Pendekatan Geographcally Weighted Ordinal Logistic Regression. PROSIDING SEMINAR NASIONAL STATISTIKA.UNIVERSITAS DIPONEGORO 2011.ISBN: 978-979-097-142-4. Semarang

Sholahuddin DS., Muhamad, 2005. SIG untuk memetakan daerah banjir dengan metode skoring dan pembobotan (Studi kasus Kabupaten Jepara). http://eprints.dinus.ac.id/14957/1/jurnal_14777.pdf diakses tanggal 15 Juli 2016.

Widayani, P. & Kusuma, D. 2014. Pemodelan Spasial Kerentanan Wilayah terhadap penyakit Leptosirosis berbasis Ekologi. Jurnal Geografi Unnes. Volume 11 No. 1 Januari 2014: 71-83 . Semarang.

Widayani. 2008. Pemodelan Spasial Epidemiologi Demam Berdarah Dengue Menggunakan Sistem Informasi Geografi DI Kecamatan Depok Kabupaten Sleman Yogyakarta.Jurnal Jurusan Sains Informasi Geografi & Pengembangan Wilayah. Fakultas Geografi UGM. Yogyakarta.

Refbacks

  • There are currently no refbacks.