Sanidhya Nika Purnomo, Purwanto Bekti Santoso, Wahyu Widianto, Dimas Baiqun, Miftah Muslihudin


Scour on the unpaved shoulder of the road is an interesting phenomenon that is still quite new in terms of analysis and discussion so that still needs further publication, since most of the roads in Indonesia has many national, provincial, district and village roads have unpaved shoulders. One cause scours in the shoulder of the road is the runoff of rain. The runoff flowing on the unpaved shoulder road, resulting in sediment transport from the upstream to the lower elevation of road shoulder. It is necessary to analyse the influence of the road geometry and intensity of the rain to scour depths of the road shoulder. In this publication conducted multivariable analysis in the influence of road geometry and rain intensity against scour depth in the unpaved shoulder of the road. The analysis starts from primary data collection in the form of a soil sample originating from the road shoulder and road geometry on some streets in Central Java, as well as secondary data in the form of rainfall data at the rain station in Central Java. The primary data in the form of soil samples, were tested in the laboratory to obtain sediment grain diameter D50, specific gravity, and the type of soil samples. Primary data that have been tested in the laboratory, as well as secondary data, then analyzed using multivariate analysis to obtain the equation model for the depth of scour at the shoulder of the road due to the influence of the road geometry and intensity of rainfall. Equation depth of scour at the curb multivariable analysis provides equal results are quite close to the depth of the data collection in the field. The results of the equation also shows that the scour depth of scour at the shoulder of the road were most affected by the slope of the cross street (Sl), and successively followed by the influence of the slope of the elongated path (Sp), the rainfall intensity (I), and the diameter of the granules (D50), where each regression coefficient row is 1223.067; 941.233; 0.8321; and 0.183. Results of multivariable analysis on shoulder scour equation provides multiple regression statistical value R of 0.946, R square of 0.894, adjusted R square of 0.869, and the standard error of 55.344.


scour depth; road geometry; rain intensity

Full Text:



Akib, S., Jahangirzadeh, A., & Basser, H. (2014). Local scour around complex pier groups and combined piles at semi-integral bridge. J. Hydrol.

Hydromech., 62(2), 108–116.

Aldrian, E. (2000). Pola Hujan Rata-Rata Bulanan Wilayah Indonesia ; Tinjauan Hasil Kontur Data Penakar Dengan Resolusi Echam T -42. Jurnal Sains & Teknologi Modifikasi Cuaca, 1(2), 113–123.

Aldrian, E. (2003). Simulations of Indonesian Rainfall with a Hierarchy of Climate Models. Universitat Hamburg

Aldrian, E., Gates, L. D., & Widodo, F. H. (2003). Report No . 346 Variability of Indonesian Rainfall and the Influence of ENSO and Resolution in ECHAM4 Simulations and in the Reanalyses. Hamburg.

Beg, M., & Beg, S. (2013). Scour Reduction around Bridge Piers : A Review. International Journal of Engineering Inventions, 2(7), 7–15.

Bezak, N., Brilly, M., & Šraj, M. (2014). Comparison Between The Peaks-Over-Threshold Method And The Annual Maximum Method For Flood Frequency Analysis. Hydrological Sciences Journal – Journal Des Sciences Hydrologiques, 59(5), 959–977.

Breusers, H. N. C. (1977). Local Scour Around Cylindrical Piers. Journal of Hydraulic Research, 15(3), 211–252.

Dey, S. (1999). Sediment threshold. Applied Mathematical Modelling, 23(5), 399–417.

Elsebaie, I. H. (2013). An Experimental Study of Local Scour Around Circular Bridge Pier in Sand Soil. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 13(01).

Ghazvinei, P. T., Ariffin, J., Abdullah, J., & Mohamed, T. A. (2014). Assessment of Local Scour at Bridges Abutment. Research Journal of Applied Sciences, Engineering and Technology, 8(3), 296–304.

Google-Earth-Pro. (2016). Retrieved December 24, 2016, from

Halim, F. (2014). Pengaruh Debit Terhadap Pola Gerusan di Sekitar Abutmen Jembatan ( Uji Laboratorium Dengan Skala MOdel Jembatan Megawati ). Jurnal Ilmiah Media Engineering, 4(1).

Khwairakpam, P., & Mazumdar, A. (2009). Local Scour Around Hydraulic Structures. International Journal of Recent Trends in Engineering, 1(6), 1–3

Madsen, H., Rasmussen, P. F., & Rosbjerg, D. (1997). Comparison of Annual Maximum Series and Partial Duration Series Methods for Modeling Extreme Hydrologic Events. WATER RESOURCES RESEARCH, 33(4), 747–757

Melville, B. (2008). The Physics Of Local Scour. In Fourth International Conference on Scour and Erosion (pp. 28–40)

Mkhandi, S., Opere, A. O., & Willems, P. (2005). Comparison Between Annual Maximum And Peaks Over Threshold Models For Flood Frequency Prediction (Vol. 1). Tanzania. Retrieved from

Paphitis, D. (2001). Sediment movement under unidirectional flows: An assessment of empirical threshold curves. Coastal Engineering, 43(3-4), 227–245.

Purnomo, S. N., & Widiyanto, W. (2014). Perencanaan Model Fisik Peristiwa Gerusan di Bahu Jalan Raya. In Peran Rekayasa Sipil dalam Pembangunan Infrastruktur Perkotaan Berkelanjutan untuk Mendukung Percepatan dan Perluasan Pembangunan Ekonomi Indonesia (pp. 163–171). Bandung: Institut Teknologi Nasional

Purnomo, S. N., Widiyanto, W., Santosa, P. B., Wahyu, E., Tri, T., Yuni, K., … Soedirman, U. J. (2015). Analisis variabel yang berpengaruh terhadap kedalaman gerusan di bahu jalan. In Pengembangan Sumber Daya Pedesaan dan Kearifan Lokal Berkelanjutan V (in Bahasa Indonesia) (pp. 199 – 209). Purwokerto: Lembaga Penelitian dan Pengabdian Masyarakat UNSOED

Santosa, P. B., Purnomo, S. N., Nasiain, & Aprilia, P. D. (2016). Pengaruh kemiringan melintang badan jalan pada kedalaman gerusan di bahu jalan dengan pemodelan gerusan di bahu jalan. In Universitas Jenderal Soedirman (Ed.), Pengembangan Sumber Daya Perdesaan dan Kearifan Lokal Berkelanjutan VI. Purwokerto: Universitas Jenderal Soedirman.

United States of Soil Conservation Service. (1983). Sedimentation. In National Engineering Handbook. Washington D. C.: U. S. Dept. of Agriculture, Soil Conservation Service.

Wilcock, P. R. (1988). Methods for estimating the critical shear stress of individual ffractions in mixed size sediment. Water Resources Research, 24(7), 1127–1135.

Yanmaz, A. M. (2001). Uncertainty of Local Scouring Parameters Around Bridge Piers. Turk J Engin Environ Sci, 25, 127–137.


  • There are currently no refbacks.