SEQUENTIAL INJECTION-FLOW REVERSAL MIXING (SI-FRM) UNTUK PENENTUAN KREATININ DALAM URIN

A Sabarudin, ERN Wulandari, H Sulistyarti

Abstract


Jumlah kreatinin yang diekskresikan melalui urin menunjukkan keadaan ginjal seseorang. Dalam penelitian ini, dikembangkan metode untuk penentuan kreatinin secara otomatis yaitu sequential injection-flow reversal mixing (SI-FRM). Pendeteksian kreatinin didasarkan pada pembentukan senyawa berwarna (merah-orange) yang dihasilkan dari reaksi antara kreatinin dan asam pikrat dalam suasana basa dan diukur pada panjang gelombang 530 nm. Reaksi pembentukan senyawa kreatinin-pikrat dilakukan melalui pembentukan segmen antara sampel dan reagen di-holding coil dan selanjutnya dilakukan proses flow reversal di-mixing coil. Parameter-parameter yang mempengaruhi metode ini diuji secara detail. Hasil penelitian menunjukkan bahwa kondisi optimum pengukuran kreatinin yaitu menggunakan konsentrasi asam pikrat 0,035 M dan NaOH 3,5%, laju alir flow reversal 5 µL/detik, laju alir produk reaksi 20 µL/detik, jumlah flow reversal empat kali dan menggunakan tiga segmen (pikrat-kreatinin-pikrat) dengan masing-masing volume segmen 100 µL. Metode SI-FRM ini telah diaplikasikan langsung untuk penentuan kadar kreatinin dalam urin dengan limit deteksi 1,7 µg/g.

 

The amount of creatinine excreted in urine indicates kidney condition. In this experiment, the automatic determination method of determining creatinine was developed by using sequential injection-flow reversal mixing (SI-FRM). The detection of creatinine is based on the formation of a colored product (red-orange) yielded from the reaction of creatinine with picrate at alkaline medium. The absorbance is measured at wavelength of 530 nm.  The formation of creatinine-picrate complex is performed through the segment formation between sample and reagent in the holding coil and then flow reversal process in the mixing coil of SI-FRM. Several parameters affecting to this method are investigated in detail. The results show that the optimum concentrations of picric acid and NaOH are 0.035 M and 3.5%, respectively. Other optimized conditions, such as the flow reversal rate of there 5 µL/s, flow rate of product of 20 µL/s, amount of flow reversal process of four times, and segment amount of three (picrate-creatinine -picrate) with each volume of 100 µL, were obtained. This method is successfully applied to the determination of creatinine in urine with the detection limit of 1.7 µg/g.


Keywords


creatinine; flow reversal mixing; sequential injection; urine

Full Text:

PDF

References


Faria LC & Pasquini C. 1992. Spectrophotometric determination of creatinine by monosegmented continuous-flow analysis. J Autom Chem 14: 97-100.

Garcia CD & Henry CS. 2004. Direct detection of renal function markers using microchip CE with pulsed electrochemical detection. Analyst 129: 579-584.

Harmoinen A, Sillanaukee P & Jokela H. 1991. Determination of creatinine in serum and urine by cation-exchange high-pressure liquid chromatography. Clin Chem 37: 563-565.

Johns BA, Broten T, Stranieri MT, Holahan MA & Cook JJ. 2001. Simple high-performance liquid chromatographic method to analyze serum creatinine has several advantages over the Jaffe´ picric acid reaction as demonstrated with a cimetidine dose response in rhesus monkeys. J Chromatogr B 759: 343-348.

Khan GF & Wernet W. 1997. A highly sensitive amperometric creatinine sensor. Anal Chim Acta 351: 151-158.

Ruzicka J & Marshall GD. 1990. Sequential Injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta 237: 329-343.

Sabarudin A, Lenghor N, Liping Y, Furusho Y & Motomizu S. 2006. Automated online preconcentration system for the determination of trace amounts of lead using Pb-selective resin and inductively coupled plasma–atomic emission spectrometry. Spectrosc Lett 39: 669-682.

Sabarudin A, Lenghor N, Oshima M, Hakim L, Takayanagi T, Gao YH & Motomizu S. 2007. Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry. Talanta 72: 1609-1617.

Staden JF. 1983. Determination of creatinine in urine and serum by flow-injection analysis using the Jaffe reaction. Fresen Z Anal Chem 315: 141-144.

Stefan RI, Bokretsion RG, Staden JF, Aboul-enein HY. 2003. Simultaneous determination of creatine and creatinine using amperometric biosensors. Talanta 60: 1223-1228.

Suzuki Y, Aruga T, Kuwahara H, Kitamura M, Kuwabara T, Kawakubo S & Iwatsuki M. 2004. A simple and portable colorimeter using a red-green-blue light-emitting diode and its application to the on-site determination of nitrite and iron in river-water. Anal Sci 20: 975-977.

Suzuki Y, Ito Y, Fukusawa T, Kawakubo S & Iwatsuki M. 2005. Development of compact photometric titrator and absorptiometric detector for flow-injection analysis using light-emitting diode as light source. Bunseki Kagaku 54: 291-295.

Tsai HA & Syu MJ. 2005. Synthesis of creatinine-imprinted poly (a-cyclodextrin) for the specific binding of creatinine. Biomaterials 26: 2759-2766.

Yoshiwara M, Sakuragawa A & Matsuhashi A. 2005. Determination of creatinine by flow injection analysis using creatinine deiminase. Bunseki Kagaku 54: 1205-1210.


Refbacks

  • There are currently no refbacks.