Distribution of the Termite Reproductive Castes in Gunungpati, Semarang, Central Java

Niken Subekti, Saniaturrohmah Saniaturrohmah


Soil termites play a role as  a primary decomposer in natural forests. These types of termites can   be turned into residential pests as more land use to be plantations, housing, and buildings. This study analyzed the distribution of subterranean termites' reproductive caste, its identification, and environmental factors that influence the development of subterranean termites. The research methods used include distribution analysis using UV flying traps, surveys using  GPS, identification of reproductive castes, and environmental factors including  soil  nutrients,  vegetation analysis, temperature, soil moisture, air humidity, and wind speed. The results showed that the distribution of termites is found throughout the Gunungpati Semarang area. The identification of reproductive caste/alates found was Termitidae. Environmental  factors  that  affect the life of termites in the Gunungpati Semarang area December 2019-January 2020 include the temperature of 27.0-28.4 oC, the humidity of 60.2 -61.2 %, air pressure 950.5-975.0 hPa, soil pH 4.84 - 5.60 and soil moisture 29.7-34.0 %. The vegetation was dominated by the Apocynaceae, Sapindaceae, and  Euphorbiaceae. The highest value of diversity and vegetation index sequentially are Sekaran, Patemon, and Ngijo. It is found that the entire Gunungpati area of Semarang is a suitable habitat  for the growth and development of the Termitidae. The finding will help the authoritative institution to consider Gunungpati as a conservation area.


Alates; Environment; Semarang; Termites

Full Text:



Ali, I.G., Sheridan, G., French, R.J., and Ahmed, B.M. (2013). Ecological Benefits of Termite Soil Interac-tion and Microbial Symbiosis in the Soil Ecosystem. Journal of Earth Sciences and Geotechnical Engi-neering, 3(4), 63-85

Andinata, P. S. (2015). Pola Spasial dan Temporal Klimatologis Tekanan Udara Permukaan Wilayah Indonesia. Bogor: Institut Pertanian Bogor.

Axelsson, E.P and Andersson, J. (2012). A Case Study of Termite Mound Occurrence in Relation to For-est Edges and Canopy Cover within the Barandabhar Forest Corridor in Nepal. International Journal of Biodiversity and Conservation, 4(15), 633-641

Bunemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E, Deyn, G.D., Goede, R.D., Fleskens, L., Geissen, V., Kuyper, T.W., Mader, P., Pulleman, M., Sukkel, W., Groenigen, J.W.V., and Brussaard, L. (2018). Soil Biology and Soil quality – A critical re-view.Biochemistry 120 (2018), 105–125

Cardoso, E.J.BN., Vasconcellos, R.L.F., Bini, D., Miyauchi, M.Y.H., Santos, C.A.D., Alves, P.R.L., Paula, A.M.D., Nakatani, A.S., Pereira, J.D.M., and Nogueira, M. A. (2013). Soil health: looking for suitable indicators. What should be considered to as-sess the effects of use and management on soil health. Sci. Agric., 70 (4), 274-289

Costantini, E.A.C., Branquinho, C., Nunes A., Schwilch, G., Stavi, I., Valdecantos A., and Zucca, C. (2016). Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth, 7 (2016), 397–414.

Carrijo, T.F., and Cancello, E.M. (2011). Divinotermes (Isoptera, Termitidae, Termitinae), a New Genus from South America. Sociobiology, 58(3), 537-556.

Cornelius, M.L., and Osbrink, W.L.A. (2011). Effect of Seasonal Changes in Soil Temperature and Moisture on Wood Consumption and Foraging Activity of Formosan Subterranean Termite (Isoptera: Rhi-notermitidae). Journal of Economic Entomology, 4(3), 1024- 1030.

Fagundes, T.M, Ordonez, J.C., and Yaghoobian, N. (2020). How the thermal environment shapes the structure of termite mounds. R. Soc. open sci. 7, 191332.

Li, Y., Dong, Z.Y., Pan, D.Z., and Chen, L.H. (2017). Effect of Termite on Soil pH and Its Applica on for Termite Control in Zhejiang Province, China. Socio-biology. 64(3), 317- 326.

Maynard, D.S., Crowther, T.W., King, J.R., Warren, R.J., and Bradford, M.A.. (2015). Temperate for-est termites: ecology, biogeography, and ecosystem impacts. Ecological Entomology 40 (2015), 199–210.

Mugerwa, S., Nyangito, M., Mpairwe, D., and Nderitu, J. (2011). Effect of biotic and abiotic factors on composition and foraging intensity of subterranean termites. African Journal of Environmental Science and Technology, 5(8), 579-588.

Mouhamad, R., Alsaede, A., and Iqbal, M. (2016). Be-havior of Potassium in Soil: A mini- review. Chemistry International 2(1), 58-69.

Mullins, A.J., Messenger, M.T., Hochmair, H.H., To-nini, F., Su, N.Y., and Riegel, C. (2015). Dispersal Flights of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). J. Econ. Entomol., 108(2), 1-13.

Nandika, D., Rismayadi, Y. and Diba, F. (2016). RAYAP Biologi dan Pengendaliannya, 2nd ed.; Mu-bin N. (Ed). Muhammadiyah University Press: Sura-karta.

Pratikno, H. Ahmad, I., and Budianto, B.H. (2018). Diversity and abundance of termites along altitudinal gradient and slopes in Mount Slamet, Central Java, Indonesia. Biodiversitas.19 (5), 1649-1658.

Pribadi, T., Raffiudin, R., and Harahap, I.S. (2011). Termites community as environmental bioindicators in highlands: a case study in eastern slopes of Mount Slamet, Central Java. Biodeiversitas Journal of Bio-logical Biodiversity, 12 (3): 235-240.

Santos, M.N., Teixeira, M.L.F, Pereira M.B, and Menezes, E.B. (2010). Environmental factors fnfuencing the foraging and feeding behavior of two termite species (Isoptera: Rhinotermitidae) in natural habitats. Sociobiology, 55 (3), 763-777.

Sarcinelli, T.S., Chaefer, C.E.G.R., Filho, E.I.F., and Neri, A.V. (2013). Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest. Journal of Tropical Ecology, 29 (2013), 439-448.

Siebers, N., Martius, C., Eckhardt, K.U., Garcia, M.V.B., Leinweber, P., and Amelung, W. (2015). Origin and alteration of organic matter in termite mounds from different feeding guilds of the amazon rainforests. PLoS ONE, 10(4), e0123790. DOI:10.1371/journal.

Subekti, N. (2012a). Organic material and soil mineral accumulation from mound building of subterranean termites Macrotermes gilvus Hagen (blattodea: termitidae). Biosaintifika, 4(1), 10-17.

Subekti, N. (2012b). Insect diversity of tinjomoyo for-est, semarang city, central java. Jurnal Tengkawang, 1(2), 19-26.

Subekti, N., Priyon, B., and Aisyah, A,N. (2018). Bio-diversity of termites and damage building in sema-rang, indonesia. Biosaintifika, 10(1), 176-182.

Subekti, N. (2010). Karakteristik populasi rayap tanah Coptotermes spp (blattodea: rhinotermitidae) dan dampak serangannya. Biosaintifika 2(2), 110-114.

Subekti, N., Nurvaizah , Nunaki, J.H., Wambraw, H.L., and Mar' ah R. (2018). Biodiversity and Distribution of Termite Nests in West Papua, Indonesia. Biodi-versitas, 19 (4), 1659- 1664

Subekti, N., Widiyaningrum, P., Nandika, D., and Solihin, D.D. (2019). Colony composition and bi-omass of Macrotermes gilvus Hagen (blattodea: ter-mitidae) in indonesia. IIUM Engineering Journal, 20(1), 24-28

DOI: https://doi.org/10.15294/biosaintifika.v12i2.25391


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.