The Effect of Inquiry Learning with Scaffolding on Misconception of Light Material among Fourth-Grade Students

D. A. Haidar, L. Yuliati, S. K. Handayanto

Abstract

The purpose of this study is to determine the effect of Inquiry learning with scaffolding to decrease the percentage of light material misconception among fourth-grade students. The method used was Quasi-experimental with a non-equivalent control group design. The population was fourth-grade students of the Surya Buana Islamic Elementary School, Malang. The result of Anacova showed that for the “Class†variable, the value of Significance (P-value) obtained was smaller than the α significance level of 0,006 < 0,05. Based on the results of the Anacova test it was concluded that there was a significant effect from the use of Inquiry learning with scaffolding to decrease the percentage of light material misconception in fourth-grade students of Surya Buana Islamic Elementary School, Malang. The average percentage of students’ misconceptions in the experimental class at the initial conception was 38.7% and dropped to 15.4% in conception after inquiry learning with scaffolding. While the average percentage of students’ misconceptions of control class at the initial conception was 37.8% and dropped became 22.7% at conception after conventional learning. The decrease in the percentage of students’ misconceptions of the experimental class was greater than the control class by a difference of 10.7%. Further research is suggested to examine more deeply the effect of inquiry learning with scaffolding on process skill, learning achievement, and other aspects of learning that are likely to be developed in students.

Keywords

inquiry; scaffolding; misconception; three-tier test

Full Text:

PDF

References

Agnes, D., Kaniawati, I., & Danawan, A. (2015). Analisis Deskriptif Tes Tiga Tingkat Materi Optika Geometri dan Alat Optik. Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains, 2015, 597-600.

Asyhari, A. (2015). Implementasi pembelajaran fisika SMA berbasis inkuiri terbimbing terintegrasi pendidikan karakter untuk meningkatkan

hasil belajar siswa pada materi cahaya dan optika. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 4(1), 37-49.

Awang, I. S. (2015). Kesulitan Belajar IPA Peserta Didik Sekolah Dasar. VOX EDUKASI: Jurnal Ilmiah Ilmu Pendidikan, 6(2), 108-122.

Aydin, S. (2012). Remediation of misconceptions about geometric optics using conceptual change texts. Journal of Education Research and Behavioral Sciences, 1(1), 001-012.

Barthlow, M. J., & Watson, S. B. (2014). The effectiveness of processâ€oriented guided inquiry learning to reduce alternative conceptions in secondary chemistry. School Science and Mathematics, 114(5), 246-255.

Bean, T. W., & Stevens, L. P. (2002). Scaffolding reflection for preservice and inservice teachers. Reflective Practice, 3(2), 205-218.

Caleon, I., & Subramaniam, R. (2010). Development and application of a threeâ€tier diagnostic test to assess secondary students’ understanding of waves. International journal of science education, 32(7), 939-961.

Choi, H. J., & Mantik, O. (2017). The effect of scaffolded think-group-share learning on Indonesian elementary schooler satisfaction and learning achievement in English classes. International Electronic Journal of Elementary Education, 10(2), 175-183.

Creswell, J. W. (2012). Collecting qualitative data. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. Fourth ed. Boston: Pearson, 204-35.

Dewi, P. Y., & Primayana, K. H. (2019). Effect of learning module with setting contextual teaching and learning to increase the understanding of concepts. International Journal of Education and Learning, 1(1), 19-26.

Fink, L. D. (2013). Creating significant learning experiences: An integrated approach to designing college courses. John Wiley & Sons.

Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning.

Gormally, C., Brickman, P., Hallar, B., & Armstrong, N. (2009). Effects of inquiry-based learning on students’ science literacy skills and confidence. International journal for the scholarship of teaching and learning, 3(2),1–22.

Gudyanga, E., & Madambi, T. (2014). Pedagogics of chemical bonding in Chemistry; perspectives and potential for progress: The case of Zimbabwe secondary education. International Journal of Secondary Education, 2(1), 11-19.

Heywood, D. S. (2005). Primary trainee teachers’ learning and teaching about light: Some pedagogic implications for initial teacher training. International journal of science education, 27(12), 1447-1475.

Hobri, H. (2010). Metodologi penelitian pengembangan (aplikasi pada penelitian Pendidikan matematika). Jember: Pena Salsabila.

Hsu, Y. S., Lai, T. L., & Hsu, W. H. (2015). A design model of distributed scaffolding for inquirybased learning. Research in Science Education, 45(2), 241-273.

Hung, P. H., Hwang, G. J., Lin, Y. F., Wu, T. H., & Su, I. H. (2013). Seamless connection between learning and assessment-applying progressive learning tasks in mobile ecology inquiry. Journal of Educational Technology & Society, 16(1), 194-205.

Jalan, S., Nusantara, T., Subanji, S., & Chandra, T. D. (2016). Students’ Thinking Process in Solving Combination Problems Considered from

Assimilation and Accommodation Framework. Educational Research and Reviews, 11(16), 1494-1499.

Juniati, N. W., & Widiana, I. W. (2017). Penerapan Model Pembelajaran Inkuiri Untuk Meningkatkan Hasil Belajar IPA. Jurnal Ilmiah Sekolah

Dasar, 1(1), 20-29.

Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772-775.

Kaltakçi, D., & DidiÅŸ, N. (2007, April). Identification of preâ€service physics teachers’ misconceptions on gravity concept: a study with a 3â€tier misconception test. In AIP Conference Proceedings (Vol. 899, No. 1, pp. 499-500). American Institute of Physics.

Keeley, P. (2012). Misunderstanding misconceptions. Science Scope, 35(8), 12.

Khairaty, N. I., Taiyeb, A. M., & Hartati, H. (2018). Identifikasi Miskonsepsi Siswa Pada Materi Sistem Peredaran Darah Dengan Menggunakan Three-Tier Test Di Kelas Xi Ipa 1 Sma Negeri 1 Bontonompo. Jurnal Nalar Pendidikan, 6(1), 7-13.

Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research

and theory with practice. Computers & Education, 56(2), 403-417.

Laksana, D. N. L. (2016). Miskonsepsi Dalam Materi IPA Sekolah Dasar. JPI (Jurnal Pendidikan Indonesia), 5(2), 166-175.

Longfield, J. (2009). Discrepant teaching events: Using an inquiry stance to address students’ misconceptions. International Journal of Teaching and Learning in Higher Education, 21(2), 266.

Masyhud, M. S. (2016). Metode Penelitian Pendidikan. Jember: Lembaga Pengembangan Manajemen dan Profesi Kependidikan.

Metaputri, N. K., Margunayasa, I. G., & Garminah, N. N. (2016). Pengaruh Model Pembelajaran Inkuiri Terbimbing dan Minat Belajar Terhadap Keterampilan Proses Sains Pada Siswa Kelas IV SD. MIMBAR PGSD Undiksha, 4(1), 89–97.

Muallifah, M., Suyono, S., & Yuanita, L. (2017). Mencegah Miskonsepsi Siswa Pada Kesetimbangan Kimia Menggunakan Model Inkuiri Terbuka dan Remediasi Menggunakan Strategi Conceptual Change. JPPS (Jurnal Penelitian Pendidikan Sains), 3(1), 306-313.

Muliastrini, N. K. E., Nyoman, D., & Rasben, D. G. (2019). Pengaruh Model Pembelajaran Inkuiri dengan Teknik Scaffolding Terhadap Kemampuan Literasi Sains dan Prestasi Belajar IPA. Jurnal Ilmiah Sekolah Dasar, 3(3), 254-263.

Mulungye, M. M., O’Connor, M., & Ndethiu, S. (2016). Sources of Student Errors and Misconceptions in Algebra and Effectiveness of

Classroom Practice Remediation in Machakos County--Kenya. Journal of Education and Practice, 7(10), 31-33.

Munawaroh, F., & Falahi, M. D. (2016). Identifikasi miskonsepsi siswa SDN Kemayoran I Bangkalan pada konsep cahaya menggunakan CRI

(Certainty of response Index). Jurnal Pena Sains Vol, 3(1), 69–76.

Önder, F., Senyigit, Ç., & Silay, I. (2017). The Effects of Misconceptions on Pre-Service Teachers› Ability to Constructing Simple Electric

Circuits. European Journal of Physics Education, 8(1), 1-10.

Passmore, C., Gouvea, J. S., & Giere, R. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In International handbook of research in history, philosophy and science teaching (pp. 1171-1202). Springer, Dordrecht.

Pesman, H., & Eryilmaz, A. (2010). Pengembangan Tes Tiga Tingkat untuk Menilai Kesalahpahaman Tentang Sirkuit Listrik Sederhana. Jurnal

Penelitian Pendidikan, 10(3), 208-222.

Piaget, J. (1977). The development of thought: Equilibration of cognitive structures.(Trans A. Rosin). Viking.

Purnamawati, D., Ertikanto, C., & Suyatna, A. (2017). Keefektifan lembar kerja siswa berbasis inkuiri untuk menumbuhkan keterampilan berpikir

tingkat tinggi. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 6(2), 209-219.

Puspitaningsih, F., Wartono, W., & Handayanto, S. K. (2018). Pengaruh PBL dengan Scaffolding Prosedural terhadap Kemampuan Berpikir

Tingkat Tinggi Ditinjau dari Kemampuan Tinggi dan Rendah Siswa. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 3(7), 898-

Safaruddin, S., Ibrahim, N., Juhaeni, J., Harmilawati, H., & Qadrianti, L. (2020). The Effect of Project-Based Learning Assisted by Electronic

Media on Learning Motivation and Science Process Skills. Journal of Innovation in Educational and Cultural Research, 1(1), 22-29.

Sanjaya, W. (2006). Strategi Pembelajaran Berorientasi Standar Proses Pendidikan. Jakarta: Kencana Prenada Media Group. 2011. Penelitian Tindakan Kelas.

Sari, D. N., Linuwih, S., & Sulhadi, S. (2019). Misconception Remediation through Analogy to Increase the Understanding of Learners Concepts in Rotational Dynamics Subject. Physics Communication, 3(1), 53-59.

Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77-96.

Senja, S., Maria, H. T., & Oktavianty, E. (2018). Remediasi Miskonsepsi Konsep Cahaya Para Siswa SMP Menggunakan Pembelajaran Ulang Berbasis Mnemonic. Jurnal Pendidikan dan Pembelajaran Khatulistiwa, 7(7), 1–13.

Simons, K. D., & Klein, J. D. (2007). The impact of scaffolding and student achievement levels in a problem-based learning environment. Instructional science, 35(1), 41-72.

Slavin, R. E. (2006). Translating research into widespread practice: The case of success for all. Translating theory and research into educational

practice: Developments in content domains, large scale reform, and intellectual capacity, 113-126.

Sözen, M., & Bolat, M. (2011). Determining the misconceptions of primary school students related to sound transmission through drawing. Procedia-Social and Behavioral Sciences, 15, 1060-1066.

Sudijono, A. (2009). Pengantar statistik Pendidikan edisi I. Jakarta: Rajawali Pers.

Suniati, N. M. S., Sadia, I. W., & Suhandana, G. A. (2013). Pengaruh implementasi pembelajaran kontekstual berbantuan multimedia interaktif tehadap penurunan miskonsepsi (studi kuasi eksperimen dalam pembelajaran cahaya dan alat optik di SMP Negeri 2 Amlapura). Jurnal Administrasi Pendidikan Indonesia, 4(1), 1–13.

Suparno, P. (2013). Miskonsepsi & perubahan konsep dalam pendidikan fisika. Gramedia Widiasarana.

Suryawati, E., & Osman, K. (2017). Contextual learning: Innovative approach towards the development of students’ scientific attitude and natural science performance. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 61-76.

Tompo, B., Ahmad, A., & Muris, M. (2016). The Development of Discovery-Inquiry Learning Model to Reduce the Science Misconceptions of Junior High School Students. International

Journal of Environmental and Science Education, 11(12), 5676-5686.

Uzun, S., Alev, N., & Karal, I. S. (2013). A cross-age study of an understanding of light and sight concepts in physics. Science Education International, 24(2), 129-149.

Valanides, N., & Angeli, C. (2008). Distributed cognition in a sixth-grade classroom: An attempt to overcome alternative conceptions about light and color. Journal of Research on Technology in Education, 40(3), 309-336.

Van Dijk, A. M., & Lazonder, A. W. (2016). Scaffolding students’ use of learner-generated content in a technology-enhanced inquiry learning environment. Interactive learning environments, 24(1), 194-204.

Van Uum, M. S., Verhoeff, R. P., & Peeters, M. (2017). Inquiry-based science education: Scaffolding pupils’ self-directed learning in open

inquiry. International Journal of Science Education, 39(18), 2461-2481.

Widarti, H. R., Permanasari, A., & Mulyani, S. (2016). Student misconception on redox titration (a challenge on the course implementation through cognitive dissonance based on the multiple representations). Jurnal Pendidikan IPA Indonesia, 5(1), 56-62.

Widiyatmoko, A., & Shimizu, K. (2018). Literature review of factors contributing to students’ misconceptions in light and optical instruments. International Journal of Environmental and Science Education, 13(10), 853-863.

Yuliati, L., Riantoni, C., & Mufti, N. (2018). Problem Solving Skills on Direct Current Electricity through Inquiry-Based Learning with PhET Simulations. International Journal of Instruction, 11(4), 123-138.

Yuliati, Y. (2019). Miskonsepsi Siswa Pada Pembelajaran Ipa Serta Remediasinya. BIO EDUCATIO:(The Journal of Science and Biology Education), 2(2), 50–58.

Yunitasari, W., Susilowati, E., & Nurhayati, N. D. (2013). Pembelajaran Direct Instruction Disertai Hierarki Konsep Untuk Mereduksi Miskonsepsi Siswa Pada Materi Larutan Penyangga Kelas XI IPA Semester Genap SMA Negeri 2 Sragen Tahun Ajaran 2012/2013. Jurnal Pendidikan Kimia (JPK), 2(3), 182-190.

Zydney, J. M. (2010). The effect of multiple scaffolding tools on students’ understanding, consideration of different perspectives, and misconceptions of a complex problem. Computers & Education, 54(2), 360-370.

Refbacks

  • There are currently no refbacks.