Phytoremediation Potential of Cordyline Fruticosa for Lead Contaminated Soil

L. Herlina, B. Widianarko, H. R. Sunoko


Phytoremediation is a practical, environmentally-friendly, low-cost technological solution used to clean various types of pollution, including metals, pesticide residues, and oils from contaminated soil and water. In this study, Cordyline fruticosa was planted in the lead-contaminated soil. Each pot was given 250 mg/kg and 375 mg/kg of lead. The parameters observed included biomass (mg), lead content in the root, stem, and leaf, bioaccumulation factor, translocation factor, metal tolerance index, and amount of metal extraction, which were analyzed after 30, 60, and 90 days. The results revealed that root, stem and leaf biomass (g) were significantly different from control (T0). The lead contents were root<stem <leaf, while the translocation factor value was more than one, except for lead exposure 375 mg/kg (T2) in the second month and 250 mg/kg lead (T1) in the third month. The bioaccumulation factor for all treatments was less than one, and the metal tolerance index ranged from 90.87% - 93.07%. Besides, the amount of root metal extraction was smaller than the shoot. In sum, C. fruticosa is potential phytoremediation.



phytoremediation; contaminated soil; lead; cordyline fruticosa

Full Text:



Al-Akeel, K. (2016). Lead Uptake, Accumulation, and Effects on Plant Growth of common reed (Phragmites Australis (Cav.) Trin. ex Steudel) plants in Hydroponic Culture.

Arisusanti, R. J., & Purwani, K. I. (2013). Pengaruh mikoriza Glomus fasciculatum terhadap akumulasi logam timbal (Pb) pada tanaman Dahlia pinnata. Jurnal Sains dan Seni ITS, 2(2), E69-E73.

Arshad, M., Silvestre, J., Pinelli, E., Kallerhoff, J., Kaemmerer, M., Tarigo, A., ... & Dumat, C. (2008). A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere, 71(11), 2187-2192.

Bauddh, K., & Singh, R. P. (2012). Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. International journal of phytoremediation, 14(8), 772-785.

Boonyapookana, B., Parkpian, P., Techapinyawat, S., DeLaune, R. D., & Jugsujinda, A. (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health, 40(1), 117-137.

Cui, S., Zhang, T., Zhao, S., Li, P., Zhou, Q., Zhang, Q., & Han, Q. (2013). Evaluation of three ornamental plants for phytoremediation of Pb-contaminated soil. International journal of phytoremediation, 15(4), 299-306.

Doganlar, Z. B., Cakmak, S., & Yanik, T. (2012). Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. International Journal of Biology, 4(3), 148.

Elekes, C. C. (2014). Eco-technological solutions for the remediation of polluted soil and heavy metal recovery. Environmental Risk Assessment of Soil Contamination, InTech, Rijeka, 309-335.

Gupta, A. K., Verma, S. K., Khan, K., & Verma, R. K. (2013). Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites.

Haryanti, D., Budianta, D., & Salni, S. (2013). Potensi Beberapa Jenis Tanaman Hias sebagai Fitoremediasi Logam Timbal (Pb) dalam Tanah. Jurnal Penelitian Sains, 16(2).

Huang, H., Yu, N., Wang, L., Gupta, D. K., He, Z., Wang, K., ... & Yang, X. E. (2011). The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresource Technology, 102(23), 11034-11038.

Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. The Botanical Review, 75(4), 339-364.

Jiang, W., & Liu, D. (2010). Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biology, 10(1), 40.

Kabir, M., Iqbal, M. Z., & Shafiq, M. (2009). Effects of lead on seedling growth of Thespesia populnea L. Advances in Environmental Biology, 184-191.

Kalve, S., Sarangi, B. K., Pandey, R. A., & Chakrabarti, T. (2011). Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil. Current Science, 888-894.

Kaur, G. (2014). Pb-induced toxicity in plants: effect on growth, development, and biochemical attributes. Journal of Global Biosciences, 3(6), 881-889.

Khan, S., Hesham, A. E. L., Qiao, M., Rehman, S., & He, J. Z. (2010). Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research, 17(2), 288-296.

Kumar, B., Smita, K., & Flores, L. C. (2017). Plant mediated detoxification of mercury and lead. Arabian Journal of Chemistry, 10, S2335-S2342.

Liu, J. N., Zhou, Q. X., Sun, T., Ma, L. Q., & Wang, S. (2008). Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. Journal of hazardous materials, 151(1), 261-267.

Malar, S., Vikram, S. S., Favas, P. J., & Perumal, V. (2016). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical studies, 55(1), 1-11.

Małecka, A., Piechalak, A., Morkunas, I., & Tomaszewska, B. (2008). Accumulation of lead in root cells of Pisum sativum. Acta Physiologiae Plantarum, 30(5), 629-637.

Mangkoedihardjo, S. (2008). Jatropha curcas L. for phytoremediation of lead and cadmium polluted soil. World Applied Sciences Journal, 4(4), 519-522.

Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11(3), 843-872.

Mani, D., Kumar, C., Patel, N. K., & Sivakumar, D. (2015). Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. International journal of environmental science and technology, 12(4), 1211-1222.

Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research, 48(7), 638-647.

Nasser, S., Soad, E., & Fatma, E. (2014). Phytoremediation of lead and cadmium contaminated soils using sunflower plant. Journal of Stress Physiology & Biochemistry, 10(1).

Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59(2), 315-323.

Pandey, V. C., & Singh, K. (2011). Is Vigna radiata suitable for the revegetation of fly ash landfills?. Ecological Engineering, 37(12), 2105-2106.

Parizanganeh, A. H., Bijnavand, V., Zamani, A. A., & Hajabolfath, A. (2012). Concentration, distribution and comparison of total and bioavailable heavy metals in top soils of Bonab District in Zanjan province. Open Journal of Soil Science, 2(02), 123.

Saxena, P., & Misra, N. (2010). Remediation of heavy metal contaminated tropical land. In Soil Heavy Metals (pp. 431-477). Springer, Berlin, Heidelberg.

Sidauruk, L., & Sipayung, P. (2015). Fitoremediasi lahan tercemar di kawasan industri Medan dengan tanaman hias. Jurnal Pertanian Tropik, 2(2).

Siswanto, D. (2009). Respon Pertumbuhan Kayu Apu (Pistia stratiotes L.) Jagung (Zea mays L.) dan Kacang Tolo (Vigna sinensis L.) terhadap Pencemar Timbal (Pb). Malang: Universitas Brawijaya.

Srivastava, D., Singh, A., & Baunthiyal, M. (2015). Lead toxicity and tolerance in plants. Journal of Plant Science and Research, 2(2), 123.

Subhashini, V., & Swamy, A. V. V. S. (2013). Phytoremediation of Pb and Ni Contaminated Soils Using Catharanthus roseus (L.). Universal Journal of Environmental Research & Technology, 3(4).

Susana, R., & Suswati, D. (2013). Bioakumulasi Dan Distribusi Cd Pada Akar Dan Pucuk 3 Jenis Tanaman Famili Brassicaceae: Implementasinya Untuk Fitoremediasi (Cadmium Bioaccumulation and Distribution in Root and Shoot of 3 Crops of Brassicaceae: Implication for Phytoremediation). Jurnal Manusia dan Lingkungan, 20(2), 221-228.

Thakur, S., Singh, L., Ab Wahid, Z., Siddiqui, M. F., Atnaw, S. M., & Din, M. F. M. (2016). Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental monitoring and assessment, 188(4), 206.

The United States Environmental Protection Agency, USEPA (2000) Electrokinetic and Phytoremediation in Situ Treatment of Metal-Contaminated Soil: State-of-the-Practice. Draft for Final Review. EPA/542/R-00/XXX. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington DC

Varun, M., D’Souza, R., Pratas, J., & Paul, M. S. (2011). Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium. Bulletin of environmental contamination and toxicology, 87(1), 45.

Vithanage, M., Dabrowska, B. B., Mukherjee, A. B., Sandhi, A., & Bhattacharya, P. (2012). Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environmental chemistry letters, 10(3), 217-224.

Wang, C., Tian, Y., Wang, X., Geng, J., Jiang, J., Yu, H., & Wang, C. (2010). Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology, 19(6), 1130-1139.

Wu, Q., Wang, S., Thangavel, P., Li, Q., Zheng, H., Bai, J., & Qiu, R. (2011). Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. International Journal of phytoremediation, 13(8), 788-804.

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 2011.

Zacchini, M., Pietrini, F., Mugnozza, G. S., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197(1-4), 23-34.

Zaier, H., Ghnaya, T., Rejeb, K. B., Lakhdar, A., Rejeb, S., & Jemal, F. (2010). Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresource Technology, 101(11), 3978-3983.

Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41(7), 820-831.

Zhou, C. F., Wang, Y. J., Sun, R. J., Liu, C., Fan, G. P., Qin, W. X., ... & Zhou, D. M. (2014). Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida. Environmental toxicology and chemistry, 33(10), 2351-2357.


  • There are currently no refbacks.