Combined Effect of Pesticides Containing Active Ingredients of Chlorpyrifos and Mancozeb on the DNA Damage of Chlorella Sorokiniana Shihira and Krauss
Abstract
The intensive use of pesticides in agricultural areas can leave residues of pesticide mixtures on the soil surface. Surface run-off can carry pesticide residues, enter water bodies, and then may affect non-target organisms. Chlorpyrifos and mancozeb are active ingredients commonly contained in pesticides applied in shallot farming. This study aims to evaluate the combined effect of pesticides containing active ingredients of chlorpyrifos and mancozeb on the growth and DNA damage of the microalgae Chlorella sorokiniana. The test organism was exposed to the combined concentration of chlorpyrifos:mancozeb, i.e., 0:0, 20%:20%, 20%:80%, 80%:20%, and 80%:80% of the individual EC50 of each pesticide with sampling time at hours 0, 6, 24, and 48. Microalgae growth was estimated by cell counting method, and DNA damage was analyzed by alkaline comet assay method with parameters, i.e., Tail Intensity (TI%), Head Intensity (HI%), Tail Moment (TM), Olive Tail Moment (OTM), and Tail Factor (TF). The results showed that the combined pesticides inhibited the growth of C. sorokiniana, with the highest growth inhibition being at a combined concentration of 80%:80%. The TM and OTM values of C. sorokiniana increased with the increase of combined concentrations at an exposure period of up to 24 hours. In conclusion, the combined exposure could induce growth inhibition and DNA damage of Chlorella sorokiniana, mainly in the first 24 hours. The TM and OTM can be used as sensitive biomarkers for biomonitoring pesticide pollution.
Keywords
Full Text:
PDFReferences
Abd-Allah, S. M., Goud, N. A., & Talha, M. M. (2012). Ecological Hazards of Some Pesticides on Unicellular Freshwater Green Alga; Pseudokirchneriella subcapitata. Alexandria Science Exchange Journal, 33(1).
Asselborn, V., Fernández, C., Zalocar, Y., & Parodi, E. R. (2015). Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis. Ecotoxicology and Environmental Safety, 120, 334–341.
Atifah, Y., Lubis, M., Lubis, L. T., & Maulana, A. (2019). Pencemaran Pestisida pada Sungai Batang Gadis, Mandailing Natal, Sumatera Utara. BIOEDUSCIENCE: Jurnal Pendidikan Biologi Dan Sains, 3(2), 100–105.
Bhuvaneswari, G. R., Purushothaman, C. S., Pandey, P. K., Gupta, S., Kumar, H. S., & Shukla, S. P. (2018). Toxicological Effects of Chlorpyrifos on Growth, Chlorophyll a Synthesis and Enzyme Activity of a Cyanobacterium Spirulina (Arthrospira) platensis. International Journal of Current Microbiology and Applied Sciences, 7(6), 2980–2990.
BTI. (2015). Algae to Energy-Using and Re-using a Hemocytometer to Count Algae Cells (BTI Curriculum Development Projects in Plant Biology).
Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559–a012559.
Chamsi, O., Pinelli, E., Faucon, B., Perrault, A., Lacroix, L., Sánchez-Pérez, J. M., & Charcosset, J. Y. (2019). Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener. Annales de Limnologie, 55(3).
Chen, S., Chen, M., Wang, Z., Qiu, W., Wang, J., Shen, Y., Wang, Y., & Ge, S. (2016). Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environmental Toxicology and Pharmacology, 45, 179–186.
Cid, Á., Prado, R., Rioboo, C., Suarez-Bregua, P., & Herrero, C. (2012). Use of Microalgae as Biological Indicators of Pollution: Looking for New Relevant Cytotoxicity Endpoints. In M. N. Johnsen (Ed.), Microalgae: Biotechnology, Microbiology, and Energy (pp. 311–323). Nova Science Publisher.
Collins, A. R., & Azqueta, A. (2012). Single-Cell Gel Electrophoresis Combined with Lesion-Specific Enzymes to Measure Oxidative Damage to DNA. In Methods in Cell Biology (Vol. 112, Issue C, pp. 69–92). Academic Press.
Dall’agnol, J. C., Pezzini, M. F., Uribe, N. S., & Joveleviths, D. (2021). Systemic effects of the pesticide mancozeb – A literature review. European Review for Medical and Pharmacological Sciences, 25, 4113–4120.
Erbes, M., Weßler, A., Obst, U., & Wild, A. (1997). Detection of Primary DNA Damage in Chlamydomonas reinhardtii by Means of Modified Microgel Electrophoresis. Environmental and Molecular Mutagenesis, 30, 448–458.
Esperanza, M., Cid, Á., Herrero, C., & Rioboo, C. (2015). Acute effects of a pro-oxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. Aquatic Toxicology, 165, 210–221.
Fatma, F., Verma, S., Kamal, A., & Srivastava, A. (2018a). Monitoring of morphotoxic, cytotoxic, and genotoxic potential of mancozeb using Allium assay. Chemosphere, 195, 864–870.
Fatma, F., Verma, S., Kamal, A., & Srivastava, A. (2018b). Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa. Physiology and Molecular Biology of Plants, 24(1), 115–123.
Fernández, C., Asselborn, V., & Parodi, E. R. (2021). Toxic effects of chlorpyrifos, cypermethrin and glyphosate on the non-target organism Selenastrum capricornutum (Chlorophyta). Anais Da Academia Brasileira de Ciencias, 93(4).
Focke, F., Schuermann, D., Kuster, N., & Schär, P. (2010). DNA fragmentation in human fibroblasts under extremely low-frequency electromagnetic field exposure. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 683(1–2), 74–83.
Habibah, R., Iswanto, B., & Rinanti, A. (2020). The Significance Of Tropical Microalgae Chlorella Sorokiniana As A Remediate Of Polluted Water Caused By Chlorpyrifos. International Journal Of Scientific & Technology Research, 9(1), 4460–4463.
Hazlina, A. Z., Devanthiran, L., & Fatimah, H. (2019). Morphological Changes and DNA Damage in Chlorella vulgaris (UMT-M1) Induced by Hg2+. Malaysian Applied Biology, 48(1), 27–33.
Huang, X., Cui, H., & Duan, W. (2020). Ecotoxicity of chlorpyrifos to aquatic organisms: A review. In Ecotoxicology and Environmental Safety (Vol. 200). Academic Press.
Jiang, H., Islam, M. S., Sazawa, K., Hata, N., Taguchi, S., Nakamura, S., Sugawara, K., & Kuramitz, H. (2016). Development of an Electrochemical Bioassay Based on the Alkaline Phosphatase Activity of Chlamydomonas reinhardtii to Assess the Toxicity of Heavy Metals. International Journal of Electrochemical Science, 5090–5102.
Langie, S. A. S., Azqueta, A., & Collins, A. R. (2015). The comet assay: Past, present, and future. Frontiers in Genetics, 6(266).
Li, M., Gao, X., Wu, B., Qian, X., Giesy, J. P., & Cui, Y. (2014). Microalga Euglena as a bioindicator for testing genotoxic potentials of organic pollutants in Taihu Lake, China. Ecotoxicology, 23, 633–640.
Lori, G., Tassinari, R., Narciso, L., Udroiu, I., Sgura, A., Maranghi, F., & Tait, S. (2021). Toxicological Comparison of Mancozeb and Zoxamide Fungicides at Environmentally Relevant Concentrations by an In Vitro Approach. International Journal of Environmental Research and Public Health, 18(16), 8591.
Ma, T., Chen, L., Wu, L., Zhang, H., & Luo, Y. (2016). Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels. PLOS ONE, 11(3), e0151128.
Martinez, R. S., di Marzio, W. D., & Sáenz, M. E. (2015). Genotoxic effects of commercial formulations of Chlorpyrifos and Tebuconazole on green algae. Ecotoxicology, 24(1), 45–54.
Martins, M., & Costa, P. M. (2015). The comet assay in Environmental Risk Assessment of marine pollutants: Applications, assets, and handicaps of surveying genotoxicity in non-model organisms. Mutagenesis, 30(1), 89–106.
Mohammadi-Sardoo, M., Mandegary, A., Nabiuni, M., Nematollahi-Mahani, S.-N., & Amirheidari, B. (2018). Mancozeb induces testicular dysfunction through oxidative stress and apoptosis: Protective role of N -acetylcysteine antioxidant. Toxicology and Industrial Health, 34(11), 798–811.
Neri, M., Milazzo, D., Ugolini, D., Milic, M., Campolongo, A., Pasqualetti, P., & Bonassi, S. (2015). Worldwide interest in the comet assay: A bibliometric study. Mutagenesis, 30(1), 155–163.
Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. W. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of The Total Environment, 707, 136080.
Nugroho, A. P., Handayani, N. S. N., Darmasiwi, S., Zulfikar, W. G., & Rizki, A. A. (2020). Biochemical Responses and DNA Damage of Chlorella pyrenoidosa H. Chick upon Exposure to Combined Cu and Cd at Environmentally Realistic Levels. Environment and Natural Resources Journal, 18(3), 290–303.
Prabowo, R., & Subantoro, R. (2012). Kualitas Air dan Beban Pencemaran Pestisida di Sungai Babon Kota Semarang. MEDIAGRO, 8(1), 9–17.
Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian Journal of Microbiology, 60(2), 125–138.
Rezayian, M., Niknam, V., & Ebrahimzadeh, H. (2019). Oxidative damage and antioxidative system in algae. Toxicology Reports, 6, 1309–1313.
Roede, J. R., & Miller, G. W. (2014). Mancozeb. In P. Wexler (Ed.), Encyclopedia of Toxicology (3rd ed., pp. 144–146). Academic Press.
Singh, J., & Mittal, S. K. (2012). Chlorella sp. based biosensor for selective determination of mercury in presence of silver ions. Sensors and Actuators, B: Chemical, 165(1), 48–52.
Sud, D., Kumar, J., Kaur, P., & Bansal, P. (2020). Toxicity, natural, and induced degradation of chlorpyrifos. Journal of Chilean Chemical Society, 65(2).
Wang, C., Cai, M., Liu, Y., Yang, F., Zhang, H., Liu, J., & Li, S. (2022). Facile construction of novel organic–inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight. Journal of Colloid and Interface Science, 605, 727-740.
Zhang, J., Liu, S. S., Zhang, J., Qin, L. T., & Deng, H. P. (2012). Two novel indices for quantitatively characterizing the toxicity interaction between ionic liquid and carbamate pesticides. Journal of Hazardous Materials, 239–240, 102–109.
Refbacks
- There are currently no refbacks.