An Identification of Tuberculosis (Tb) Disease in Humans using Nae Bayesian Method

Agustin Trihartati S., C. Kuntoro Adi

Abstract


Tuberculosis (TB) is a disease that can cause a death if not recognized or not treated properly. To reduce the death rate of tuberculosis patients, the health experts need to diagnose that disease as early as possible. Based on the main indication data, laboratory test results and the rontgen photo, Nae Bayesian approach in data mining techniques could be optimized to diagnose tuberculosis. Nae Bayes classifiers predict class membership probabilities with a class that has the highest probability value. The output of the system is an identification Tuberculosis type of the patients. Testing of the system using 237 data sample with variation of cross-validation in 3, 5, 7 and 9-fold cross validation gives an average accuracy 85,95%.

Keywords



Full Text:

PDF

References


DinasKesehatan Daerah Istimewa Yogyakarta. (2015). Petunjuk Teknis Manajemen TB Anak. Jakarta : Kementrian Kesehatan RI.

Kementrian RI Direktorat Jenderal Pengendalian Penyakit dan Penyehatan Lingkungan. (2014). Pedoman Nasional Pengendalian Tuberkulosis. Jakarta: Kementrian Kesehatan RI.

Tan, P. N., Steinbach. M., Kumar, V. (2006).Data Mining: Introduction To Data Mining. Boston: Pearson Addison Wesley.

Han, Jiawie., Kamber, M. (2006). Data Mining: Concepts and Technique Second Edition. Morgan Kaufman Publishers, Amsterdam.

Santosa, B. (2007). Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta : GrahaIlmu.

Prasetyo, E. (2014). Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Andi Offset.




DOI: https://doi.org/10.15294/sji.v3i2.7918

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.