An Identification of Tuberculosis (Tb) Disease in Humans using Naïve Bayesian Method

Agustin Trihartati S.(1), C. Kuntoro Adi(2),


(1) Sanata Dharma University Yogyakarta
(2) Sanata Dharma University Yogyakarta

Abstract

Tuberculosis (TB) is a disease that can cause a death if not recognized or not treated properly. To reduce the death rate of tuberculosis patients, the health experts need to diagnose that disease as early as possible. Based on the main indication data, laboratory test results and the  rontgen photo, Naïve Bayesian approach in data mining techniques could be optimized to diagnose tuberculosis. Naïve Bayes classifiers predict class membership probabilities with a class that has the highest probability value. The output of the system is an identification Tuberculosis type of the patients. Testing of the system using 237 data sample with variation of cross-validation in 3, 5, 7 and 9-fold cross validation gives an average accuracy 85,95%.

Keywords

Naïve Bayesian, tuberculosis identification, cross-validation

Full Text:

PDF

References

DinasKesehatan Daerah Istimewa Yogyakarta. (2015). Petunjuk Teknis Manajemen TB Anak. Jakarta : Kementrian Kesehatan RI.

Kementrian RI Direktorat Jenderal Pengendalian Penyakit dan Penyehatan Lingkungan. (2014). Pedoman Nasional Pengendalian Tuberkulosis. Jakarta: Kementrian Kesehatan RI.

Tan, P. N., Steinbach. M., Kumar, V. (2006).Data Mining: Introduction To Data Mining. Boston: Pearson Addison Wesley.

Han, Jiawie., Kamber, M. (2006). Data Mining: Concepts and Technique Second Edition. Morgan Kaufman Publishers, Amsterdam.

Santosa, B. (2007). Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta : GrahaIlmu.

Prasetyo, E. (2014). Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Andi Offset.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.