FRACTAL KINETICS ANALYSIS OF ENZYMATIC HYDROLYSIS OF SAWDUST USING CELLULASE IN ETHANOL PRODUCTION

Megawati Megawati, Dewi Selvia Fardhyanti, Haniif Prasetiawan, Dhoni Hartanto, Ianatul Khoiroh, Slamet Suwito, Kuntoro Kuntoro

Abstract

Sawdust is one of the abundantly lignocellulosic materials in the world. Sawdust is considered promosing for ethanol production, because it contains mainly lignin, hemicellulose, and cellulose. The drying process was applied to pretreat sawdust to make its degradation process easier. Biodegradation of sawdust was conducted by enzymatic hydrolysis using cellulase. The volume of cellulase in the hydrolysis substrate was varied from 5 to 9% v/v. The sugar concentration produced by enzymatic hydrolysis of sawdust every 1 h was recorded as well as its fractal kinetics analysis. Fermentation using yeast in 5 days was also performed to convert sugar hydrolysate to ethanol. Optimal sugar concentration in hydrolysate obtained was about 0.15 mol/L with cellulase volume of 9% v/v and its ethanol concentration was about 0.059% v/v. Fractal kinetics models by Kopelman and Valjamae which can quantitatively describe enzymatic hydrolysis of sawdust using cellulase were used. However, the result of this study indicated that, at high enzyme volume (9% v/v), Valjamae model was more suitable than Kopelman. The fractal exponent value (h) was about 0.667 and the rate constants (k) were about 0.44, 0.53, and 0.58 1/h at the enzyme volume of 5, 7, and 9% v/v. Thus, it can be concluded that enzyme volumes significantly effect rate constants.

Keywords

Cellulose; Enzymatic hydrolysis; Ethanol; Fractal kinetics model; Sawdust

Full Text:

PDF

References

Barlianti, V., Dahnum, D., Muryanto, Triwahyuni, E., Aristiawan, Y., Sudiyani, Y. 2015. Enzymatic hydrolysis of oil palm empty fruit bunch to produce reducing sugar and its kinetic. Menara Perkebunan. 83 (1): 37-43.

Bommarius, A., Katona, A., Cheben, S. E., Patel, A. S., Ragauskas, A. J. Knudsen, H., Pu, Y. 2008. Cellulase kinetics as a function of cellulose pretreatment. Metabolic Engineeering. 10(6): 370-381.

El-Zawawy, W. K., Ibrahim, M. M., Abdel-Fattahb, Y. R., Soliman, N. A., Mahmoud, M. M. 2011. Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymer. 84(3): 865-871.

Fajariah, H. D., Hadi, W. 2014. Pemanfaatan Serbuk Gergaji menjadi Biobutanol dengan Hidrolisis Selulase dan Fermentasi Bakteri Clostridium Acetobutylicum. Jurnal Teknik ITS. 3(2):F276-F280.

Gottschalk, L. M. F., Oliveira, R. O., Bon, E. P. S. 2010. Cellulases, xylanases, b-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochemical Engineering Journal. 51(1-2): 72-78.

Haryono, Ronny K., Ani N., Dian A.S. 2010. Pembuatan Bioetanol dari Bahan Berbasis Selulosa. Bachelor Thesis. Chemical Engineering Department. Faculty of Industrial Technology. Institut Teknologi Nasional. Bandung. Indonesia.

Hikmiyati, N., Sandrie N. Y., 2008. Pembuatan Bioetanol dari Limbah Kulit Singkong Melalui Proses Hidrolisis Asam dan Enzimatis. Bachelor Thesis. Chemical Engineering Department. Universitas Diponegoro. Semarang. Indonesia.

Irawati, D., Azwar N.R., Syafii W. and Artika I M. 2009. Pemanfaatan Serbuk Kayu untuk Produksi Etanol dengan Perlakuan Pendahuluan Delignifikasi menggunakan Jamur Phanerochaete Chrysosporium. Jurnal Ilmu Kehutanan. 3(1): 13 – 22.

Isroi, I. 2008. Produksi Bioetanol Berbahan Baku Biomassa Lignosellulosa: Hidrolisis Asam. https://isroi.com/2008/11/2 1/produksi-bioethanol-berbahan-baku-bio massa-lignoselulosa-hidrolisis/. Accessed on 23rd January 2017

Itelima, J., Ogbonna, A., Pandukur, S., Egbere, J., and Salami, A. 2013. Simultaneous Saccharification and Fermentation of Corn Cobs to Bio-Ethanol by Co-Culture of Aspergillus Niger and Saccharomyces Cerevisiae. International Journal of Environmental Science and Development. 4(2): 239-242.

Kopelman, R. 1988. Fractal reaction kinetics. Science. 241:1620-1626.

Megawati, Sediawan, W. B., Sulistyo, H., Hidayat, M. 2015. Sulfuric Acid Hydrolysis of Various Lignocellulose Materials and Its Mixture in Ethanol Production. Biofuels. 5(5-6): 331-340.

Pelaez, H. C., Alfaro, J. R., Montoya, J. Z. 2013. Simultaneous Saccharification and Fermentation of Cassava Stems. Dyna. 80(180): 98-104.

Saha, B. C., Iten, L. B., Cotta, M. A., Wu, Y. V. 2005. Dilute acid pretreatment enzymatic saccharification and fermentation of rice hulls to ethanol. Bioethanol Progress. 21(3): 816-822.

Saliu, B. K. 2012. Production of ethanol from some cellulosic waste biomass hydrolyzed using fungal cellulases. Thesis. University of Ilorin, Nigeria.

Sebayang, F. 2006. Pembuatan Etanol dari Molase Secara Fermentasi Menggunakan Sel Saccharomyces cerevisiae yang Terimobilisasi pada Kalsium Alginat. Jurnal Teknologi Proses. 5(2): 68-74.

Sharma, N., Kaushal, R., Gupta, R., Kumar, S. 2012. A biodegradation study of forest biomass by Aspergillus niger F7: correlation between enzymatic activity, hdrolytic percentage and biodegradation index. Brazilian Journal of Microbiology. 43(2): 467-475.

Shen, J., Agblevor, A. F. 2011. Optimization of enzyme loading and hydraulic time in hydrolysis of mixture of cotton gin waste and recycled paper sludge for the maximum profit rate. Biochemical Engineering Journal. 41: 241-250.

Singh, A., Bajar, S., Bishnoi, N. R. 2014. Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel. 116: 699-702.

Singh, A., Bishnoi, N. R. 2011. Optimization of ethanol production from microwave alkali pretreated rice straw using statistical exponential design by Saccharomyces cerevisiae. Industrial Crops and Products. 37(1): 334-341.

Stevanie, J., Kartawiria, I., Abimanyu, H. 2017. Kinetic studies of cellulose enzymatic hydrolysis from pretreated corn cob. AIP Conference Proceedings 1803: 020014-1 – 020014-7.

Usmana, A. S., Rianda S., and Novia. 2012. Pengaruh Volume Enzim dan Waktu Fermentasi Terhadap Kadar Etanol. Jurnal Teknik Kimia Universitas Sriwijaya. Palembang.

Valjamae, P., Kipper, K., Pettersson, G., Johansson, G. 2003. Synergistic cellulose hydrolysis can be described in terms of fractal kinetics. Biotechnology and Bioengineering. 84(2): 253-257.

Wang, Z., Feng, H. 2010. Fractal kinetic analysis of the enzymatic saccharification of cellulose under different conditions. Bioresource Technology. 101, 7995-8000.

Wang, Z., Xu, J-H., Feng, H., Qi, H. 2011. Fractal kinetic analysis of polymers/nonionic surfactants to eliminate lignin inhibition in enzymatic saccharification of cellulose. Bioresource Technology. 102(3): 2890-2896.

Wu, J., Ju, L.-K. 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Bioethanology Progress. 14 (4): 649-652.

Yu, M., Li, J., Chang, S., Du, R., Li, S., Zhang, L., Fan, G., Yan, Z., Cui, T., Cong, G., Zhao, G. 2014. Optimization of Ethanol Production from NaOH-Pretreated Solid State Fermented Sweet Sorghum Bagasse. Energies. 7: 4054-4067.

Refbacks

  • There are currently no refbacks.