Synthesis of Activated Carbon from Petung Bamboo Stems (Dendrocalamus Asper) Using Microwave-Assisted Pyrolysis (MAP) Process for Biogas Storage

Widi Astuti, Rayhan Mukti Ramadhan, Vista Ayudya Octaviany

Abstract

Biogas has emerged as a promising alternative to gasoline due to the depletion of fossil energy and environmental concerns. An investigation was conducted to study the technical feasibility of an adsorbed natural gas (ANG) storage system using petung bamboo-activated carbons. The activated carbons were prepared by microwave-assisted pyrolysis (MAP) and a hybrid heating system for comparison. Microwave-assisted pyrolysis is a promising alternative technology for biochar production because it has several advantages over conventional pyrolysis such as uniform heating temperature, lower energy consumption, and uniform pore size. The characteristics of the obtained activated carbons were evaluated by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy. The results showed that the higher power led to the shorter pyrolysis time. However, at a certain point, the higher power causes the biomass is not degraded completely. In this case, a microwave oven with 2 magnetrons produces a better heating temperature profile than the use of 1 magnetron. The character of activated carbon prepared using 70% power output (1120 W) is better than activated carbon prepared using 60% power output (960 W). In this condition, the pore size is more uniform and the number of functional groups is less. This implies that the petung bamboo activated carbon is the ideal candidate for ANG storage.

Keywords

adsorption; KOH; pyrolysis; microwave heating; hybrid heating

Full Text:

PDF

References

Ahmed, M. J. 2016. Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review. Journal of Environmental Chemical Engineering. 4(1): 89–99.

Ao, W., Fu, J., Mao, X., Kang, Q., Ran, C., Liu, Y., Zhang, H., Gao, Z., Li, J., Liu, G., Dai, J. 2018. Microwave assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews. 92(July 2017): 958–979.

Astuti, W., Dwi Handayani, A., Wulandari, D. A. 2018. Adsorpsi Methyl Violet oleh Karbon Aktif dari Limbah Tempurung Kelapa dengan Aktivator ZnCl2 Menggunakan Pemanasan Gelombang Mikro. Jurnal Rekayasa Kimia & Lingkungan. 13(2): 189–199.

Astuti, W., Hermawan, R. A., Mukti, H., Sugiyono, N. R. 2017. Preparation of activated carbon from mangrove propagule waste by H3PO4 activation for Pb2+ adsorption. AIP Conference Proceedings. 1788: 1–6.

Astuti, W., Sulistyaningsih, T., Kusumastuti, E., Thomas, G. Y. R. S., Kusnadi, R. Y. 2019. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresource Technology. 287(April). 121426.

Chafidz, A., Astuti, W., Augustia, V., Novira, D. T., Rofiah, N. 2018. Removal of methyl violet dye via adsorption using activated carbon prepared from Randu sawdust (Ceiba pentandra). IOP Conference Series: Earth and Environmental Science. 167(1).

Chang, K. L., Chen, C. C., Lin, J. H., Hsien, J. F., Wang, Y., Zhao, F., Shih, Y. H., Xing, Z. J., Chen, S. T. 2014. Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution. Xinxing Tan Cailiao/New Carbon Materials. 29(1): 47–54.

Coates, J. 2019. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. 1–23.

Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., Moreno-Castilla, C. 2012. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology. 111: 185–190.

Górniak, A., Midor, K., Kaźmierczak, J., Kaniak, W. 2018. Advantages and Disadvantages of Using Methane from CNG in Motor Vehicles in Polish Conditions. Multidisciplinary Aspects of Production Engineering. 1(1): 241–247.

Islam, M. A., Ahmed, M. J., Khanday, W. A., Asif, M., Hameed, B. H. 2017. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology and Environmental Safety. 138(August 2016): 279–285.

Jiang, Y., Zong, P., Tian, B., Xu, F., Tian, Y., Qiao, Y., Zhang, J. 2019. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS. Energy Conversion and Management. 179(October 2018): 72–80.

Khurana, M., Veluswamy, H. P., Daraboina, N., Linga, P. 2019. Thermodynamic and kinetic modelling of mixed CH4-THF hydrate for methane storage application. Chemical Engineering Journal. 370(January): 760–771.

Krismayanti, N. P. A., Manurung, M., Suastuti, N. G. A. M. D. A. 2018. Sintesis Arang Aktif Dari Limbah Batang Bambu Dengan Aktivator Naoh Sebagai Adsorben Ion Krom ( Iii ) & Timbal ( Ii ). Cakra Kimia. 7(Iii): 189–197.

Kuang, Y., Zhang, X., Zhou, S. 2020. Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water (Switzerland). 12(2): 1–19.

Lam, S. S., Liew, R. K., Wong, Y. M., Azwar, E., Jusoh, A., Wahi, R. 2017. Activated Carbon for Catalyst Support from Microwave Pyrolysis of Orange Peel. Waste and Biomass Valorization. 8(6): 2109–2119.

Larasati, I. A., Argo, D., Hawa, L. C., Keteknikan, J., Teknologi, P.-F., Brawijaya, P.-U., Veteran, J., Korespondensi, P. 2019. Proses Delignifikasi Kandungan Lignoselulosa Serbuk Bambu Betung dengan Variasi NaOH & Tekanan. Jurnal Keteknikan Pertanian Tropis & Biosistem. 7(3): 235–244.

Li, R., Su, M. 2017. The role of natural gas and renewable energy in curbing carbon emission: Case study of the United States. Sustainability (Switzerland). 9(4): 18–20.

Medhat, A., El-Maghrabi, H. H., Abdelghany, A., Abdel Menem, N. M., Raynaud, P., Moustafa, Y. M., Elsayed, M. A., Nada, A. A. 2021. Efficiently activated carbons from corn cob for methylene blue adsorption. Applied Surface Science Advances. 3(November 2020): 100037.

Mistar, E. M., Alfatah, T., Supar, M. D. 2020. Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. Journal of Materials Research and Technology. 9(3): 6278–6286.

Oginni, O., Singh, K., Oporto, G., Dawson-Andoh, B., McDonald, L., Sabolsky, E. 2019. Influence of One-step and Two-step KOH Activation on Activated Carbon Characteristics. Bioresource Technology Reports. 7: 100266.

Ogungbenro, A. E., Quang, D. V., Al-Ali, K. A., Vega, L. F., Abu-Zahra, M. R. M. 2020. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. Journal of Environmental Chemical Engineering. 8(5): 104257.

Pratama, I., Martin, A., Nasruddin. 2014. Adsorption Isothermal Methane Gas With Mass Flow Rate of 10 SLPMand 20 SLPM For Adsorbed Natural Gas Storage. 3(57): 29–39.

Negara, D. N. K. P, Tirta Nindhia, T. G., Surata, I. W., Sucipta, M. 2017. Chemical, strength and microstructure characterization of Balinese bamboos as activated carbon source for adsorbed natural gas application. IOP Conference Series: Materials Science and Engineering, 201(1): 012033.

Qanytah, Syamsu, K., Fahma, F., Pari, G. 2020. Characterization of Ball-Milled Bamboo-Based Activated. Peer-Reviewed Article. 15: 8303–8322.

Rijali, A., Malik, U., Zulkarnain. 2015. Pembuatan & Karakterisasi Karbon Aktif dari Bambu Betung dengan Aktivasi Menggunakan Activating Agent H2O. JOM FMIPA. 148(1): 148–162.

Riyanto, C. A., Ampri, M. S., Martono, Y. 2020. Synthesis and Characterization of Nano Activated Carbon from Annatto Peels (Bixa orellana L.) Viewed from Temperature Activation and Impregnation Ratio of H3PO4. EKSAKTA: Journal of Sciences and Data Analysis. 1(1): 44–50.

Rodrigues Teixeira, A. C., Machado, P. G., Borges, R. R., Felipe Brito, T. L., Moutinho dos Santos, E., Mouette, D. 2021. The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver’s point of view. Energy Policy. 149(December): 112106.

S. Mestre, A., Freire, C., Pires, J., P. Carvalho, A., L. Pinto, M. 2014. High performance microspherical activated carbons for methane storage and landfill gas or biogas upgrade. Journal of Materials Chemistry. 1–30.

Saad, M. J., Chia, C. H., Zakaria, S., Sajab, M. S., Misran, S., Rahman, M. H. A., Chin, S. X. 2019. Physical and chemical properties of the rice straw activated carbon produced from carbonization and KOH activation processes. Sains Malaysiana. 48(2): 385–391.

Saafie, N., Samsudin, M. F. R., Sufian, S., Ramli, R. M. 2019. Enhancement of the activated carbon over methylene blue removal efficiency via alkali-acid treatment. AIP Conference Proceedings. 2124(July).

Sieminsky, A. 2014. International Energy Outlook. Outlook. November: 70–99.

Veluswamy, H. P., Kumar, A., Seo, Y., Lee, J. D., Linga, P. 2018. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy. 216(September 2017): 262–285.

Wirawan, I. P. S., Sutrisno, S., Seminar, K. B., Nelwan, L. O. 2018. Characteristics of Microactive Carbon from Bamboo Var. Petung as Adsorbent. IOP Conference Series: Earth and Environmental Science. 147(1).

Wu, Z., Wee, V., Ma, X., Zhao, D. 2021. Adsorbed Natural Gas Storage for Onboard Applications. Advanced Sustainable Systems. 5(4): 1–16.

Yang, K., Zhang, Y., Dong, Y., Peng, J., Kaal, J., Li, W., Ma, X., Nie, Z. 2021. Tracking variations in the abun&ce and composition of dissolved organic matter in solar ponds of oilfield-produced brine. Applied Geochemistry. 131(March): 105008.

Zhang, X., Zhao, B., Liu, H., Zhao, Y., Li, L. 2022. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology and Innovation. 26: 102288.

Zhang, Y., Fan, S., Liu, T., Fu, W., Li, B. 2022. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes. Sustainable Energy Technologies and Assessments. 50: 101873.

Zhang, Y. J., Xing, Z. J., Duan, Z. K., Li, M., Wang, Y. 2014. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Applied Surface Science. 315(1): 279–286.

Zheng, Y., Li, Q., Yuan, C., Tao, Q., Zhao, Y., Zhang, G., Liu, J., Qi, G. 2018. Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon. Fuel. 230(May): 172–184.

Refbacks

  • There are currently no refbacks.