Bio-Oil Production Using Waste Biomass via Pyrolysis Process: Mini Review
Abstract
Pyrolysis process using abundantly available biomass waste fabric is a promising, renewable, and sustainable energy supply for bio-oil production. In this study, the pyrolysis of waste biomass determines the highest yield of diverse parameters of material type, temperature, reactor, method, and analysis used. From the differences in the parameters stated above, there is an opportunity to select the proper parameters to get the desired nice and quantity of bio-oil and the very best bio-oil yield. The maximum yield of each bio-oil product for pyrolysis primarily based on the above parameters was 68.9%; 56.9%; 44.4%; 44.16%; 41.05%; 39.99%. The bio-oil made out of pyrolysis was changed into analyzed using GC-MS, ft-IR, NMR, TGA, SEM, Thermogravimetric analysis, HHV, FESEM evaluation methods and the substances used had been plastic, seaweeds, oat straw, rice straw , water hyacinth, timber sawdust, sawdust, microalgae.
Keywords
Full Text:
PDFReferences
€zsin, G., Pütün, A. E. 2018. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics. 205(December): 1127-1138.
Abnisa, F., Arami-Niya, A., Daud, W. W., Sahu, J. N., Noor, I. M. 2013. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management. 76(December): 1073-1082
Abnisa, F., Wan Daud, W. M. A. 2015. Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire. Energy Conversion and Management . 99: 334- 345.
Abomohra, A. E. F., Sheikh, H. A. M., Naggar, A. H. E. N., Wang, Q. 2021. Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization. Renewable and Sustainable Energy Reviews. 149: 1-13.
Agarwal, A. K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science. 33: 233-271.
Akhtar, J., Amin, N. S. 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable Sustainable Energy Review. 16: 5101–5109.
Anil, K. V., Lokendra, S. T., Ravi, S., Prasenjit, M. 2019. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Uttarakhand, India. 89: 224-235
Antal, M. J. 1983. Biomass pyrolysis: a review of the literature part-1—carbohydrate pyrolysis. Advance Solar Energy. 1: 61–109.
Arami-Niya, A., Abnisa, F., Sahfeeyan, M. S., Daud, W. W., Sahu, J. N. 2011. Optimization of synthesis and characterization of palm shell-based bio-char as a by-product of bio-oil production process. BioResources. 7 (1): 246–264.
Arturi, K. R., Toft, K. R., Nielsen, R. P., Rosendahl, L.A., Søgaard, E. G. 2016. Characterization of liquid products from hydrothermal liquefaction (HTL) of biomass via solid-phase microextraction (SPME). Bioenergi Biomassa. 88:116-125.
Asadullah, M, Rahman A. M., Ali, M. M., Motin, A. M., Sultan, B. M., Alam, M. R. 2008. Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Bioresource Technology. 99:44–50.
Aysu, T., Sanna, A. 2015. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils. Teknologi Sumber Daya Hayati. 194: 108-116.
Azargohar, R., Jacobson, K. L., Powell, E. E., Dalai, A. K. 2013. Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. Journal of Analytical and Applied Pyrolysis. 104(November): 330-340.
Balagurumurthy, B., Bhaskar, T. 2014. Hydropyrolysis of lignocellulosic biomass: state of the art review. Biomass Conversion and Biorefinery. 4:67-75.
Bank, S. W., Bridgwater, A. V. 2016. Catalytic fast pyrolysis for improved liquid quality. Handbook of Biofuels Production (Second Edition); pp. 391-429.
Basu, P. 2018. Biomass gasification. Pyrolysis and Torrefaction. Elsevier Inc. Academic Press.
Bridgewater, A., Grassi, G. 1991. Biomass Pyrolysis Liquids Upgrading and Utilisation. Elsevier Applied Science, England.
Burra, K. G., Gupta, A. K. 2018. Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes. Applied Energy. 220(June): 408-418
Butler, E., Devlin, G., Meier, D., McDonnell, K. 2011. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable Sustainable Energy Review. 15:4171-4186.
Chiaramonti, D., Bonini, A., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A. V. 2003. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 2: tests in diesel engines. Bioenergi Biomassa. 25:101–111.
Chum, H. L., Overend, R. P. 2001. Bioamss and renewable fuels. Fuel Processing Technology. 71: 187–195.
Crayford, A. P., Bowen, P. J., Kay, P. J., Laget, H. 2010. Comparison of Gas-Oil and Bio-Oil Spray Performance for Use in a Gas Turbine.In: Prosiding ASME Turbo Expo. 1: 659–667.
Czernik, S., Johnson, D. K., Black, S. 1994. Stability of wood fast pyrolysis oil. Bioenergi Biomassa. 7:187–192.
Demirbas, M. F. 2009. Biorefineries for biofuel upgrading: A critical review. Applied Energy. 86: S151-S161.
Deng, S., Tan, H., Wang, X., Yang, F., Cao, R., Wang, Z., Ruan, R.. 2017. Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char, arang. Bioresource Technology. 239: 302-310
Duanguppama, K., Suwapaet, N., Pattiya, A., 2016. Rapid pyrolysis of contaminated sawdust in a circulating fluidized bed reactor. Journal of Analytical and Applied Pyrolysis. 118(March): 63-74
Eom, M., Lee, S., Yoo, K., Park, Y.-K., Lee, J., Kim, J. 2013. Production of bio oil by using larch sawdust in a bubbling fluidized bed reactor. Energy Sources Part A. 35 (13): 1225–1232.
Fahmi, R., Bridgwater, A. V., Darvell, L. I., Jones, J. M., Yates, N., Thain, S. 2007. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel. 86: 1560–1569.
Fahmi, R., Bridgwater, A. V., Donnison, I., Yates N., Jones, J. M. 2008. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 87: 1230–1240.
Farzad, S., Mandegari, M. A., Gorgens, J. F. 2016. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Resource Journal. 3: 483-495.
Fei, J., Zhang, J., Wang, F., Wang, J. 2012. Synergistic effects on co-pyrolysis of lignite and high-sulfur swelling coal. Journal of Analytical Applied Pyrolysis. 95: 61–67.
Freel, B. A., Graham, R. G., Huffman, D. R. 1996. Commercial aspects of rapid thermal processing (RTM). In: Bridgwater AV, Hogan E, editor. Production and utilization of bio-oil. Newbury, Inggris: CPL Press. pp. 86–95.
Gollakota, A. R. K., Reddy, M., Subramanyam, M. D., Kishore, N. 2016. Review Teknik Upgrade Minyak Pirolisis, Renew. Mempertahankan. Energi Review. 58 (2016): 1543-1568.
Gong, Z., Fang, P., Wang, Z., Li, Q., Li, X., Meng, F., Zhang H., Liu, L. 2020. Catalytic pyrolysis of chemical extraction residue from microalgae biomass. Renewable Energy. 148: 712-719.
Gumba, R. E., Saallah, S., Misson, M., Ongkudon, C. M., Anton, A. 2016. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Reseaerch Journal. 3(3):431-447.
Guo, X., Wang, S., Wang, K., Liu, Q., Luo, Z. 2010. Influence of extractives on mechanism of biomass pyrolysis. Journal of Fuel Chemistry and Technology. 38: 42–46.
Guo, Y., Yeh, T., Song, W., Xu, D., Wang, S. A. 2015. review of bio-oil production from hydrothermal liquefaction of algae. Renew Sustainable Energy Review. 48: 776-790.
Gust, S. 1997. Combustion Experiences of Flash Pyrolysis Fuel in Intermediate Size Boilers In: Bridgwater AV, Boocock DGB, editor. Developments in thermochemical biomass conversion. London: Blackie Academic & Profesional. pp. 481–488.
Hagos, K., Zong, J., Li, D., Liu, C., Lu, X. 2016. Anaerobic co-digestion process for biogas production. Renewable and Sustainable Energy Reviews. 76: 148514-96.
Hassan, H., Lim, J. K., Hameed, B. H. 2016. Recent progress on co-pyrolysis conversion into high-quality bio-oil. Bioresource Technology. 221: 645-655.
Horne, P. A., Williams, P. T. 1996. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel. 75: 1051–1059.
Huber, G., Iborra, S., Corma, A. 2006. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemal Reviews. 106: 4044-4098.
Idris, R., Chong, C. T., Asik, J. A., Ani, F. N. 2020. Optimization studies of microwave-induced co-pyrolysis of empty fruit bunches/waste truck tire using response surface methodology. Journal of Cleaner Production. 244(2): 118649
Jembatan-air, A. V. 1999. Principles and practice of biomass fast pyrolysis processes for liquids. Joournal of Analytical Applied Pyrolysis. 51: 3–22.
Jones, S. B., Holladay, J. E., Valkenburg, C., Stevens, D. J., Walton, C. W., Kinchin, C.. 2009. Production of Gasoline and Diesel from Biomass Via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case. Pacific Northwest National Lab.
Joshi, N., Lawal, A. 2012. Hydrodeoxygenation of pyrolysis oil in a microreactor. Chemical Engineering Science . 74:1–8.
Kabir, G., Hamid, B. H.2017. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable and Sustainable Energy Review. 70: 945-967.
Khan, A. A., de Jong, W., Jansens, P. J., Spliethoff, H. 2009. Biomass combustion in flui- dized bed boilers: potential problems and remedies. Fuel Process Technology. 90: 21–50.
Lazzari, E., Schena, T., Primaz, C. T., da Silva Maciel, G. P., Machado, M. E., Cardoso, C. A. L., Jacques, R. A., Caramão, E. B. 2016. Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste. Industrial Crops and Products. 83: 529–536.
Lede, J., Broust, F., Ndiaye, F.-T., Ferrer Monique. 2007. Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel. 86: 1800–1810.
Lee, S. –H., Eom, M. S., Yoo, K.-S., Kim, N.-C., Jeon, J.-K., Park, Y.-K. 2008. The yields and composition of bio-oil produced from Quercus Acutissima in a bubbling fluidized bed pyrolyzer. Journal of Analytical Applied Pyrolysis. 83(1): 110–114.
Li, J., Yan, R., Xiao, B., Wang, X. L., Yang, H. P. 2007. Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor. Energy Fuels. 21: 2398–407.
Lin, B., Huang, Q., Chi, Y. 2018. Co-Pyrolysis Characteristics and Kinetic Analysis of Oil Sludge with Different Additives Journal of Thermal Science. 30: 1452–1467.
Linck, M., Felix, L., Marker, T., Roberts, M. 2014. Integrated biomass hydropyrolysis and hydrotreating: a brief review. WIREs Energy and Environment. 3: 5755-81.
Lu, Q., Li, W. Z., Zhu, X. F. 2009. Overview of fuel properties of fast pyrolysis of oil biomass. Energy Conversion and Management. 50(5): 1376-1383
Magdziarz, A., Wilk, M., Wadrzyk, M. 2020. Pyrolysis of hydrochar derived from biomass – Experimental investigation. Fuel. 267: 117246.
Maity, S. K. 2015. Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews Review. 43: 1446-1466.
Mante, O. D., Agblevor, F. A., McClung, R. 2011. Fluid catalytic cracking of biomass pyrolysis vapors. Biomass Conversion and Biorefinery. 1: 189-201.
McKendry, P. 2002. Energy production from biomass (Part 1): Overview of biomass, Bioresource Technology . 83(1): 37-46.
Mishra, R. K., Mohanty, K. 2020. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresource Technology. 311: 123480.
Mlonka-Mędrala, A., Evangelopoulos, P., Sieradzka, M., Zajemska, M., Magdziarz., A. 2021. Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char:Experimental and numerical investigations. Fuel. 296: 120611.
Muneer, B., Zeeshan, M., Qaisar, S., Razzaq, M., Iftikhar, H. 2019. Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. July 2019. Journal of Cleaner Production. 237(3): 117762.
Park, D. K., Kim, S. D., Lee, S. H., Lee, J. G. 2010. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology. 101(15): 6151–6156.
Park, Y.-K., Jung, J., Ryu, S., Lee, HW, Siddiqui, MZ, Jae, J., Watanabe, A., Kim, Y.-M., 2019. Catalytic Pyrolysis of Waste Polyethylene Terephthalate over Waste Concrete. Applied Chemistry for Engineering. 30(6): 707-711.
Perkins, G.,Bhaskar, T., Konarova, M. 2018. Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. 90: 292-315.
Pode, R. 2016. Potential applications of rice husk ash waste from rice husk biomass power plant, Renewable and Sustainable Energy Reviews. 53: 1468-1485.
Pothiraj, C., Arun, A., Eyini, M. 2015. Simultaneous saccharification and fermentation of cassava waste for ethanol production. Biofuel Research Journal 2(1): 196-202.
Probstein, R. F., Hicks, R. E. 1982. Synthetic Fuels. McGraw-Hill Book Company, New York.
Qu, T., Guo, W., Shen, L., Xiao, J., Zhao, K. 2011. Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin. Industrial & Engineering Chemistry Research.50: 10424–10433.
Roy, P., Dias, G. 2017. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Review. 77: 59-69.
Salehi, E., Abedi, J., Harding, T. 2009. Bio-oil from Sawdust: Pyrolysis of Sawdust in a Fixed-Bed System. Energy Fuel. 23(7): 3767–3772.
Samburova, V., Connolly, J., Gyawali, M., Yatavelli, R. L., Watts, A. C., Chakrabarty, R. K. 2016. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Science of the Total Environment. 568: 391–401.
Sansaniwal, S. K., Rosen, M. A., Tyagi, S. K. 2017. Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Review. 80: 23-43.
Saxena, R. C., Adhikari, D. K., Goyal, H. B. 2009. Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews. 13:167-178.
Soni, B., Karmee, S. K. 2020. Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust. Gujarat, India. pp. 1-11.
Strenziok, R., Hansen, U., Künster, H. 2001. Combustion of Bio‐Oil in a Gas Turbine. In: Bridgwater AV, editor. Advances in thermochemical biomass conversion. Wiley Online Library. pp. 1452–1458.
UNFCC. 2015. Proposal by the President. Paris Climate Change Conference – November 2015, COP 21. Paris, France.
Uzoejinwa, B., He, X, Wang, S., Abomohra, A. E. F., Hu, Y, Wang, Q. 2018. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. 163: 468-492.
Varma, A. K., Mondal, P. 2016. Physicochemical characterization and pyrolysis kinetics of wood sawdust . Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 38(17): 2536-2544.
Venderbosch, R. H. 2015. A critical view on catalytic pyrolysis of biomass. ChemSusChem. 8(8): 1306-1316.
Wang, T., Chen, Y., Li, J., Xue, Y., Liu, J., Mei, M., Hou, H., Chen, S. 2020. Co-pyrolysis behavior of sewage sludge and rice husk by TG-MS and residue analysis. Journal of Cleaner Production. 250: 1048-1066.
Westerhof, R. J. M., Brilman, D. W. F., van Swaaij, W. P. M., Kersten, S. R.A. 2010. Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units. Industrial & Engineering Chemistry Research. 49: 1160–1168.
Wu, Z., Yang, W., Tian, X., Yang, B., 2017. Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass. Energy Conversion and Management. 135: 212-225
Xu-Jin, N., Chen-yang, Z., Deng-yin, G., Yan-hui, H., Qi-min, X., Yu-hong. 2019. Co-pyrolysis of rice straw and water hyacinth: Characterization of products, yields and biomass interaction effect. Biomass and Bioenergy. 127: 105281
Yildiz, G., Ronsse, F., Duren, R. van, Prins, W. 2016. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass. Renewable and Sustainable Energy Reviews. 57: 1596-1610.
Refbacks
- There are currently no refbacks.