Characteristics of Hybrid Coal from Co-Pyrolysis of Lignite and Corn Cob
Abstract
Keywords
Full Text:
PDFReferences
Abdelsayed, V., Ellison, C. R., Trubetskaya, A., Smith, M. W., & Shekhawat, D. (2019). Effect of microwave and thermal co-pyrolysis of low-rank coal and pine wood on product distributions and char structure. Energy & fuels, 33(8), 7069-7082.
Akyürek, Z. (2019). Sustainable Valorization of Animal Manure and Recycled Polyester: Co-pyrolysis Synergy. Sustainability, 11(8), 2280.
Anca-Couce, A., Tsekos, C., Retschitzegger, S., Zimbardi, F., Funke, A., Banks, S., . . . Kienzl, N. (2020). Biomass pyrolysis TGA assessment with an international round robin. Fuel, 276, 118002. doi:https://doi.org/10.1016/j.fuel.2020.118002
Herlinawati, T., Rizal, M., Amalia, J., & Mahdiannoor, M. (2022). PEMANFAATAN LIMBAH JAGUNG PAKAN SEBAGAI POC PADA TANAMAN JAGUNG MANIS. ZIRAA'AH MAJALAH ILMIAH PERTANIAN, 47(1), 122-128.
Hossain, M., Islam, M., Rahman, M., Kader, M., & Haniu, H. (2017). Biofuel from co-pyrolysis of solid tire waste and rice husk. Energy Procedia, 110, 453-458.
Indonesia, S. N. (2000). Briket Arang Kayu SNI 01-6235-2000. Badan Standardisasi Nasional.
Jeong, H. M., Seo, M. W., Jeong, S. M., Na, B. K., Yoon, S. J., Lee, J. G., & Lee, W. J. (2014). Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions. Bioresource technology, 155, 442-445.
Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126-1140.
Li, K., Zhang, L., Zhu, L., & Zhu, X. (2017). Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresource technology, 234, 48-52.
Meyliawati, R., Saputera, D., Alam, G. N. A., Moenardi, D. F., Muttaqin, R., & Dewi, R. A. (2022). Determinants of Indonesian Coal Commodity Export Before and Post the Spread of the Covid-19 Policy. East Asian Journal of Multidisciplinary Research, 1(5), 801-812.
Mukherjee, A., Lal, R., & Zimmerman, A. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment, 487, 26-36.
Nanda, S., Dalai, A. K., Berruti, F., & Kozinski, J. A. (2016). Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste and Biomass Valorization, 7(2), 201-235.
Naqvi, S. R., Hameed, Z., Tariq, R., Taqvi, S. A., Ali, I., Niazi, M. B. K., . . . Shahbaz, M. (2019). Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Management, 85, 131-140. doi:https://doi.org/10.1016/j.wasman.2018.12.031
Pinto, F., Miranda, M., & Costa, P. (2015). Co-pyrolysis of wastes mixtures obtained from rice production: upgrading of produced liquids. Chemical Engineering Transactions, 43, 2053-2058.
Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055-1064.
Qiram, I., Widhiyanuriyawan, D., & Wijayanti, W. (2015). Pengaruh Variasi Temperatur Terhadap Kuantitas Char Hasil Pirolisis Serbuk Kayu Mahoni (Switenia Macrophylla) Pada Rotary 39 Kiln. Jurnal Rekayasa Mesin, 6(1), 39-44.
Saeed, S., Saleem, M., & Durrani, A. (2020). Thermal performance analysis and synergistic effect on co-pyrolysis of coal and sugarcane bagasse blends pretreated by trihexyltetradecylphosphonium chloride. Fuel, 278, 118240.
Sasongko, D., Wulandari, W., Rubani, I. S., & Rusydiansyah, R. (2017a). Effect of Biomass Type, Blend Composition, and Co-Pyrolysis Temperature on Hybrid Coal Quality. Paper presented at the AIP Conference Proceedings, Bandung.
Sasongko, D., Wulandari, W., Rubani, I. S., & Rusydiansyah, R. (2017b). Effects of biomass type, blend composition, and co-pyrolysis temperature on hybrid coal quality. AIP Conference Proceedings, 1805(1), 040009. doi:10.1063/1.4974430
Singh, S., Patil, T., Tekade, S. P., Gawande, M. B., & Sawarkar, A. N. (2021). Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Science of the Total Environment, 783, 147004.
Soncini, R. M., Means, N. C., & Weiland, N. T. (2013). Co-pyrolysis of low rank coals and biomass: Product distributions. Fuel, 112, 74-82.
Tahmasebi, A., Zheng, H., & Yu, J. (2016). The influences of moisture on particle ignition behavior of Chinese and Indonesian lignite coals in hot air flow. Fuel Processing Technology, 153, 149-155.
Tumuluru, J. S., & Fillerup, E. (2020). Briquetting characteristics of woody and herbaceous biomass blends: Impact on physical properties, chemical composition, and calorific value. Biofuels, Bioproducts and Biorefining, 14(5), 1105-1124.
Uzoejinwa, B. B., He, X., Wang, S., Abomohra, A. E.-F., Hu, Y., He, Z., & Wang, Q. (2019). Co-pyrolysis of macroalgae and lignocellulosic biomass. Journal of Thermal Analysis and Calorimetry, 136(5), 2001-2016.
Wei, L.-g., Zhang, L., & Xu, S.-p. (2011). Effects of feedstock on co-pyrolysis of biomass and coal in a free-fall reactor. Journal of fuel chemistry and technology, 39(10), 728-734.
Xu, C., Xu, G., Zhao, S., Zhou, L., Yang, Y., & Zhang, D. (2015). An improved configuration of lignite pre-drying using a supplementary steam cycle in a lignite fired supercritical power plant. Applied energy, 160, 882-891.
Yuliani, H. (2019). Neraca Massa dan Neraca Panas: Deepublish.
Zhang, L., Xu, S., Zhao, W., & Liu, S. (2007). Co-pyrolysis of biomass and coal in a free fall reactor. Fuel, 86(3), 353-359.
Zullaikah, S. (2015). Co-Pyrolysis Characteristics of Indonesia Low Rank Coal and Oil Palm Empty Fruit Bunch. Seminar Nasional Teknik Kimia Kejuangan.
Refbacks
- There are currently no refbacks.