New Thermal Insulation Materials Based on Mahogany Sawdust and Polyurethane Foam for Buildings
Abstract
Keywords
Full Text:
PDFReferences
ASTM, D. 2010. ASTM D-2240. Shore Hardness.
Binici, H., Aksogan, O., Dıncer, A., Luga, E., Eken, M., Isikaltun, O. 2020. The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production. Thermal Science and Engineering Progress. 18: 100567.
Cetiner, I., Shea, A. D. 2018. Wood waste as an alternative thermal insulation for buildings. Energy and Buildings. 168: 374-384.
Członka, S., Kairytė, A., Miedzińska, K., Strąkowska, A., Adamus-Włodarczyk, A. 2021. Mechanically strong polyurethane composites reinforced with montmorillonite-modified sage filler (Salvia officinalis L.). International Journal of Molecular Sciences. 22(7): 3744.
Członka, S., Strąkowska, A., Kairytė, A. 2020. Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polymer testing. 87, 106534.
Dukarska, D., Walkiewicz, J., Derkowski, A., Mirski, R. 2022. Properties of rigid polyurethane foam filled with sawdust from primary wood processing. Materials. 15(15): 5361.
Geng, Y., Ji, W., Lin, B., Hong, J., Zhu, Y. 2018. Building energy performance diagnosis using energy bills and weather data. Energy and Buildings. 172: 181-191.
Gu, R., Sain, M. M., Konar, S. K. 2013. A feasibility study of polyurethane composite foam with added hardwood pulp. Industrial crops and products. 42: 273-279.
Huang, H., Zhou, Y., Huang, R., Wu, H., Sun, Y., Huang, G., Xu, T. 2020. Optimum insulation thicknesses and energy conservation of building thermal insulation materials in Chinese zone of humid subtropical climate. Sustainable Cities and Society. 52: 101840.
ISO, E. 1991. Thermal insulation-Determination of steady-state thermal resistance and related properties-Guarded hot plate apparatus. International Organization for Standardization. Geneva, Switzerland.
Lin, Y., Li, X., Huang, Q. 2021. Preparation and characterization of expanded perlite/wood-magnesium composites as building insulation materials. Energy and Buildings. 231: 110637.
Liu, L., Zou, S., Li, H., Deng, L., Bai, C., Zhang, X., Wang, S., Li, N. 2019. Experimental physical properties of an eco-friendly bio-insulation material based on wheat straw for buildings. Energy and Buildings. 201: 19-36.
Mawardi, I., Aprilia, S., Faisal, M., Rizal, S. 2022. An investigation of thermal conductivity and sound absorption from binderless panels made of oil palm wood as bio-insulation materials. Results in Engineering. 13: 100319.
Merli, F., Belloni, E., Buratti, C. 2021. Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance. Buildings. 11(8): 361.
Muthuraj, R., Lacoste, C., Lacroix, P., Bergeret, A. 2019. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial crops and products. 135: 238-245.
Ross, R. J. 2010. Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190. 1 - 190.
Tiuc, A., Rusu, T., Nemeş, O. 2015. Obtaining process sound absorbent composite material. Patent No. 129228 B1. international classification C04B 26/26 (2006.01).
Tiuc, A. E., Nemeş, O., Vermeşan, H., & Toma, A. C. 2019. New sound absorbent composite materials based on sawdust and polyurethane foam. Composites Part B: Engineering. 165: 120-130.
Zou, S., Li, H., Wang, S., Jiang, R., Zou, J., Zhang, X., Liu, L., Zhang, G. 2020. Experimental research on an innovative sawdust biomass-based insulation material for buildings. Journal of Cleaner Production. 260: 121029.
Refbacks
- There are currently no refbacks.