The Effects of Raw Material Ratio and Calorific Value on Gasification Rate from Co-Gasification of Coal and Biomass (Bagasse)

Muhammad Harry Kurniansyah, Abu Hasan, Aida Syari

Abstract

To reduce greenhouse gas pollution by 29% in 2030 and actively fight climate change, Indonesia uses biomass as an alternative energy which can be combined with coal. Bagasse is a relatively abundant biomass that has not been effectively utilized. Bagasse can be used as a more effective alternative energy source if it is processed with co-gasification, which is the conversion of solid fuel into gas from two different fuel materials at the same time to produce syngas. The characteristics of biomass and coal co-gasification are closely linked to reactor type and gasification parameters such as temperature, gasifying agent, and mass ratio. The composition of the produced syngas changes depending on the calorific value of the coal used and the raw material ratio. The amount of syngas produced rises in direct proportion to the amount of biomass, and the quantity of air supplied causes complete combustion, so the syngas content decreases. The impact of the calorific value of the coal used, as well as variations in the ratio of the composition of coal and bagasse, on the supply of oxygen in downdraft type gasification equipment is investigated in this study. Bagasse characteristics identified by proximate and ultimate analysis indicate that this biomass can be used as an alternative source of renewable energy. The co-gasification process with 100% coal raw material has the highest temperature and the longest time; the co-gasification process with 100% sugarcane bagasse raw material has the lowest temperature and the shortest time; and the duration of the flame produced in syngas ranges from 5-6 minutes. The 25% bagasse and 75% coal ratio provided the fastest high temperature in this testing, making it more efficient. The calorific value of coal and biomass determines combustion efficiency, with 5300 cal/gr coal producing heat that lasts longer than 3800 cal/gr and 4500 cal/gr.

Keywords

Bagasse, Coal, Co-gasification, Calorific Value, Ratio, Syngas.

Full Text:

PDF

References

Afifah, I., Sopiany, H. M. 2017. Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 Tentang Rencana Umum Energi Nasional. RUEN. 87(1-2): 149–200.

Bow, Y., Iskandar, I., Gunawan, H. 2022. Syngas Generation in a Crossdraft Gasifier System Using a Rice Strew Filter. International Journal of Research in Vocational Studies. 2(3): 87–91.

Chang, S., Zhang, Z., Cao, L., Ma, L., You, S., Li, W. 2020. Co-gasification of digestate and lignite in a downdraft fixed bed gasifier: Effect of temperature. Energy Conversion and Management. 213(April): 112798.

Chen, X., Liu, L., Zhang, L., Zhao, Y., Qiu, P. 2019. Pyrolysis Characteristics and Kinetics of Coal-Biomass Blends during Co-Pyrolysis. Energy and Fuels. 33(2): 1267–1278.

Erlinawati, E., Syarif, A., Azwan, A., Tahdid, T. 2022. Analysis of Syngas Results of the Maindepth Coal Gasification Process with Gasification Downraft Methods. Proceedings of the 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021). 9: 119–123.

Erwin, E., Syarif, A., Yerizam, M., Budiman, A., Yerizam, M., Bow, Y., Gunawan, H., Yusmartini, E. S., Elvidiah, E., Nuraini, S., Yuniar, Y., Selpiana, S., Bahrin, D., Akbar, A. H., Permatasari, A., Eliza, E., Basir, D., Sciences, N., Sriwijaya, U. 2022. Analysis of Downdraft Low Rank Coal Performance Gasification by variations coal to syngas product. 7(1): 1–7.

Sutrisno, F. B. 2019. Pengaruh Laju Aliran Udara Terhadap Kinerja Kompor Biomassa Menggunakan Bahan Bakar Limbah Kayu Mahoni Sebagai Bahan Bakar Alternatif. Saintek ITM. 32(2): 29–36.

Inayat, M., Sulaiman, S. A., Kurnia, J. C., Shahbaz, M. (2019). Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review. Renewable and Sustainable Energy Reviews. 105(January): 252–267.

Ismail, T. M., El-Salam, M. A. 2017. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification. Applied Thermal Engineering. 112: 1460–1473.

ESDM, Kementerian. 2020. Rencana Strategis Kementerian ESDM 2020-2024. 1–6. Kementerian Energi Sumber Daya dan Mineral.

Lesmana, J., Hasan, A., Syarief, A. 2021. Syngas Underground Coal Gasification (UCG) Testing of Fracture Type Subbituminous Coal in Laboratory Scale. International Journal of Research in Vocational Studies. 1(2): 79–89.

Mallick, D., Mahanta, P., Moholkar, V. S. 2020. Co-gasification of biomass blends: Performance evaluation in circulating fluidized bed gasifier. Energy. 192: 116682.

Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., Santos, J. 2016. Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel. 180; 407–416.

Riza, A., Bindar, Y., Susanto, H., Mesin, J. T., Teknik, F., Tarumanagara, U. 2017. Pengaruh kadar karbon pada proses gasifikasi. 21(1): 1–8.

Rusdianasari, R., Kalsum, L., Masnila, N., Utarina, L., Wulandari, D. 2022. Characteristics of Palm Oil Solid Waste and Its Potency for Bio-Oil Raw Material. Proceedings of the 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021). 9: 415–420.

Syarif, T., Sulistyo, H., Budi Sediawan, W., Budhijanto, B. 2018. The Effect Of Temperature And Addition Of Cao To Hydrogen Production From
Pattukku Coal Char Gasification. Jurnal Bahan Alam Terbarukan. 6(2): 198–204.

Thummar, A. M., Darji, V. P. (2020). Biomass Gasifier : A Review. International Research Journal of Engineering and Technology. 7(4): 2461 – 2466.

Tong, S., Sun, Y., Li, X., Hu, Z., Worasuwannarak, N., Liu, H., Hu, H., Luo, G., Yao, H. (2021). Gas-pressurized torrefaction of biomass wastes: Co-gasification of gas-pressurized torrefied biomass with coal. Bioresource Technology. 321: 124505.

Wijaya, I. K., Winaya, I. N. S. 2017. Pengaruh Komposisi Biomassa Dan Batubara Terhadap Performansi Co-Gasifikasi Sirkulasi Fluidized Bed. Jurnal METTEK (Jurnal Ilmiah Nasional Dalam Bidang Ilmu Teknik Mesin). 3(1): 65–70.

Yopianita, A., Syarif, A., Yerizam, M. 2022. The Potential of Charcoal Gasification as an Eco-Friendly Fuel. Proceedings of the 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021): 9; 130–137.

Yuliwati, E., Winaldo, R., Kharismadewi, D., Studi, P., Kimia, T., Teknik, F., Palembang, U. M., Studi, P., Kimia, T., Magister, P., Universitas, P., Palembang, M., Palembang, K. 2022. Optimasi Gasifikasi Ampas Tebu Menggunakan Design Expert 11 Untuk Memaksimalkan Rasio Syngas. Jurnal Distilasi. 7(1): 28–40.

Zhang, H., Guo, X., Zhu, Z. 2017. Effect of temperature on gasification performance and sodium transformation of Zhundong coal. Fuel. 189: 301–311.

Zulatama, A., Syarif, A., Yerizam, M. 2021. Effect of Oxygen Flow Rate on Combustion Time and Temperature of Underground Coal Gasification. International Journal of Research in Vocational Studies (IJRVOCAS). 1(2): 27–33.

Refbacks

  • There are currently no refbacks.