Kinetic Study of Non-Isothermal Reactions on the Pyrolysis of Various Biomass Waste by using Thermogravimetric Data

Haniif Prasetiawan, Dewi Selvia Fardhyanti, Widya Fatriasari, Hadiyanto Hadiyanto

Abstract

Population growth causes an increase in the need for petroleum. However, petroleum as primary energy is currently increasingly limited in availability. Required alternative energy sources that can be renewed to overcome these problems, one of which is bio-oil. Bio-oil is produced by a pyrolysis process using biomass such as sugarcane bagasse, rice husk, and empty oil palm fruit bunches (EFB), by heating in the absence of oxygen. Kinetic studies on pyrolysis of this type of biomass (sugar cane bagasse, rice husk, and empty oil palm fruit bunches) were carried out using the thermogravimetric method. The Coats-Redfern method was used in this study. The purpose of this study is to obtain the most appropriate reaction kinetics model to represent the pyrolysis process for each type of biomass. In addition, to determine the optimal temperature used in forming bio-oil. Approximately 5 g of each biomass is used with a heating rate of 10°C/minute. Pyrolysis was carried out until the temperature reached 750°C. The results of the research on the selected kinetic model for each biomass is a geometric model with a correlation coefficient (R2) close to 1 and the optimum temperature for producing bio-oil is around 550 - 600°C.

Full Text:

PDF

References

Alias, N. B., Ibrahim, N., & Hamid, M. K. A. (2014). Pyrolysis of empty fruit bunch by thermogravimetric analysis. Energy Procedia, 61, 2532–2536. https://doi.org/10.1016/j.egypro.2014.12.039

Balasundram, V., Ibrahim, N., Kasmani, R. M., Hamid, M. K. A., Isha, R., Hasbullah, H., & Ali, R. R. (2017). Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. Journal of Cleaner Production, 167, 218–228. https://doi.org/10.1016/j.jclepro.2017.08.173

Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037

Boumanchar, I., Chhiti, Y., M’hamdi Alaoui, F. E., Elkhouakhi, M., Sahibed-dine, A., Bentiss, F., Jama, C., & Bensitel, M. (2019). Investigation of (co)-combustion kinetics of biomass, coal and municipal solid wastes. Waste Management, 97, 10–18. https://doi.org/10.1016/j.wasman.2019.07.033

Chilla, V., & Suranani, S. (2022). Thermogravimetric and kinetic analysis of orange peel using isoconversional methods. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2022.06.196

Daniyanto, Sutijan, Deendarlianto, & Budiman, A. (2016). Reaction kinetic of pyrolysis in mechanism of pyrolysis-gasification process of dry torrified-sugarcane bagasse. ARPN Journal of Engineering and Applied Sciences, 11(16), 9974–9980. https://www.researchgate.net/publication/309118831_Reaction_kinetic_of_pyrolysis_in_mechanism_of_pyrolysis-gasification_process_of_dry_torrified-sugarcane_bagasse

Dewayanto, N., Isha, R., & Nordin, M. R. (2014). Kinetic study on the catalytic pyrolysis of decanter cake from palm oil milling plant by using thermogravimetry data. Jurnal Teknologi (Sciences and Engineering), 69(5), 65–69. https://doi.org/10.11113/jt.v69.3207

Dewi, W. U. (2017a). Evaluasi Kinetika Dekomposisi Termal Propelan Komposit Ap/Htpb Dengan Metode Kissinger, Flynn Wall Ozawa Dan Coats - Redfren. Jurnal Teknologi Dirgantara, 15(2), 115–132.

Dewi, W. U. (2017b). Evaluasi Kinetika Dekomposisi Termal Propelan Komposit Ap/Htpb Dengan Metode Kissinger, Flynn Wall Ozawa Dan Coats - Redfren (Evaluation of Thermal Decomposition Kinetics of Ap/Htpb Composite Solid Propellant Using Kissinger, Flynn Wall Ozawa and Coats –. Jurnal Teknologi Dirgantara, 15(2), 115–132.

Ebrahimi-K, R., & Abbasi, M. H. (2008). Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Transactions of Nonferrous Metals Society of China (English Edition), 18(1), 217–221. https://doi.org/10.1016/S1003-6326(08)60039-4

Erawati, E., Sediawan, W. B., & Mulyono, P. (2013). Karakteristik Bio-Oil Hasil Pirolisis Ampas Tebu (Bagasse) Emi. Jurnal Kimia Terapan Indonesia, 15(2), 47–55.

Ferdiyanto, A., Munfaridi, F. H., & Hidayat, A. (2020). Pengaruh Temperatur Proses Pirolisis Tandan Kososng Kelapa Sawit (Tkks) Terhadap Karakteristik Bio - Oil. Khazanah: Jurnal Mahasiswa, 8(1), 12.

Gajera, Z. R., Verma, K., Tekade, S. P., & Sawarkar, A. N. (2020). Kinetics of co-gasification of rice husk biomass and high sulphur petroleum coke with oxygen as gasifying medium via TGA. Bioresource Technology Reports, 11, 100479. https://doi.org/10.1016/j.biteb.2020.100479

Gözke, G. (2022). Kinetic and thermodynamic analyses based on thermogravimetric pyrolysis of watermelon seed by isoconversional and master plots methods. Renewable Energy, 201(November), 916–927. https://doi.org/10.1016/j.renene.2022.10.100

Hassan, H., Hameed, B. H., & Lim, J. K. (2020). Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions. Energy, 191, 116545. https://doi.org/10.1016/j.energy.2019.116545

Hutasoit, S., Panggabean, I., Turnip, N. J. R., & Aditia, A. (2020). Kajian Literatur Mengenai Pemanfaatan Bahan Alam Sebagai Flokulan Untuk Pemanenan Chlorella Vulgaris. Jurnnal Ilmiah Maksitej, 5(4), 99–104.

IRENA. (2018). Renewable Energy Market Analysis: Southeast Asia. In International Renewable Energy Agency.

Jamilatun, S., Pitoyo, J., Arifah, Z., Amelia, S., & Maarif, A. (2022). Pirolisis Ampas Tebu ( Saccharum officinarum Linn ): Pengaruh Suhu terhadap Yield dan Karakteristik Produk. Prosiding Semnaslit Lppm Umj 2022.

Majedi, F., Wijayanti, W., & Hamidi, N. (2015). Parameter Kinetik Char Hasil Pirolisis Serbuk Kayu Mahoni (Switenia Macrophylla) dengan Variasi Heating Rate dan 1 Temperatur. Jurnal Rekayasa Mesin, 6(1), 1–7. https://doi.org/10.21776/ub.jrm.2015.006.01.1

Mohamed, A. R., & Hamzah, Z. (2015). An alternative approach for the screening of catalytic empty fruit bunch (EFB) pyrolysis using the values of activation energy from a thermogravimetric study. Reaction Kinetics, Mechanisms and Catalysis, 114(2), 529–545. https://doi.org/10.1007/s11144-014-0798-8

Novita, S. A., Fudholi, A., Doktoral, P., Pertanian, I., Andalas, U., Studi, P., Industri, T., Andalas, U., Agribisnis, P. S., Andalas, U., Studi, P., Pertanian, T., Andalas, U., Indonesia, P., & Korespondesi, P. (2021). Artikel Review: Parameter Operasional Pirolisis Biomassa. 4(1), 53–67.

Prasetio, N., Pranita, D., & Sanjaya, A. S. (2020). PEMBUATAN BIO OIL DARI SEKAM PADI DENGAN PROSES PIROLISIS LAMBAT. Jurnal Ilmiah Berkala Sains Dan Terapan KImia, 14(1), 36–42.

R. Novia Yanti, E. Suarno, A. T. R. (2022). BATANG SAGU SEBAGAI BAHAN BAKU ENERGI ALTERNATIF. 10, 564–569.

Raza, M., Abu-Jdayil, B., Al-Marzouqi, A. H., & Inayat, A. (2022). Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renewable Energy, 183, 67–77. https://doi.org/10.1016/j.renene.2021.10.065

Ro, D., Kim, Y. M., Lee, I. G., Jae, J., Jung, S. C., Kim, S. C., & Park, Y. K. (2018). Bench scale catalytic fast pyrolysis of empty fruit bunches over low cost catalysts and HZSM-5 using a fixed bed reactor. Journal of Cleaner Production, 176, 298–303. https://doi.org/10.1016/j.jclepro.2017.12.075

Setiawan, B., Himawanto, D. A., Budiana, E. P., & Joko, P. (2016). ANALISA THERMOGRAVIMETRY PADA PIROLISIS LIMBAH PERTANIAN. Jurnal Penelitian Dan Pengabdian Masyarakat, 4(1), 49–56.

Sewry, J. D., & Brown, M. E. (2002). “Model-free” kinetic analysis? Thermochimica Acta, 390(1–2), 217–225. https://doi.org/10.1016/S0040-6031(02)00083-7

Singh, B. (2018). Rice husk ash. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102156-9.00013-4

Subagyono, D. J. N., Sa’diyah, H., & Allo, V. L. (2021). Studi Kinetika Reaksi Pirolisis Makroalga Hijau (Eucheuma Cottonii) Dengan Analisis Termogravimetri Menggunakan Metode Friedman. Molluca Journal of Chemistry Education (MJoCE), 11(2), 61–73. https://doi.org/10.30598/mjocevol11iss2pp61-73

Varma, A. K., & Mondal, P. (2016). Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis. Journal of Energy Resources Technology, Transactions of the ASME, 138(5). https://doi.org/10.1115/1.4032729

Vasconcelos, G. D. C., Mazur, R. L., Ribeiro, B., Botelho, E. C., & Costa, M. L. (2014). Evaluation (Ether-Ether-Ketone) by thermogravimetric analysis. Materials Research, 17(1), 227–235. https://doi.org/10.1590/S1516-14392013005000202

Wibowo, W. A., Cahyono, R. B., Rochmadi, & Budiman, A. (2022). Thermogravimetric Analysis and Kinetic Study on Catalytic Pyrolysis of Rice Husk Pellet using Its Ash as a Low-cost In-situ Catalyst. International Journal of Renewable Energy Development, 11(1), 207–219. https://doi.org/10.14710/IJRED.2022.41887

Wijayanti, H., Ratnasari, D., & Hakim, R. (2020). Studi Kinetika Pirolisis Sekam Padi untuk Menghasilkan Bio-oil sebagai Energi Alternatif. Buletin Profesi Insinyur, 3(2), 83–88. https://doi.org/10.20527/bpi.v3i2.67

Yan, M., Hantoko, D., Susanto, H., Ardy, A., Waluyo, J., Weng, Z., & Lin, J. (2019). Hydrothermal treatment of empty fruit bunch and its pyrolysis characteristics. Biomass Conversion and Biorefinery, 9(4), 709–717. https://doi.org/10.1007/s13399-019-00382-9

Yana, S., Yulisma, A., & Zulfikar, T. M. (2021). Manfaat Sosial Ekonomi Energi Terbarukan:Kasus Negara-negara ASEAN. Jurnal Serambi Engineering, 7(1), 2587–2600. https://doi.org/10.32672/jse.v7i1.3820

Zanatta, E. R., Reinehr, T. O., Awadallak, J. A., Kleinübing, S. J., dos Santos, J. B. O., Bariccatti, R. A., Arroyo, P. A., & da Silva, E. A. (2016). Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. Journal of Thermal Analysis and Calorimetry, 125(1), 437–445. https://doi.org/10.1007/s10973-016-5378-x

Refbacks

  • There are currently no refbacks.