Surface Evaluation of Tricalcium Phosphate Bioceramic Coating on SS-316L by Electrophoretic Deposition

Gita Novian Hermana, Dhion Khairul Nugraha, Muhammad Rizki Gorbyandi Nadi, Moch. Wisnu Arif Sektiono, Randy Mediawan Mayello, Miftah Farhan, Nirmala Cahya Kusuma, Naufal Alden Alfayed, Fauzi Muhamad Rizqi

Abstract

The development of orthopedic implant materials has become an important topic of discussion lately. The SS-316L alloy is widely used as an implant material due to its relatively low cost, corrosion resistance, and ease of production. However, metal alloys, especially SS-316L, are prone to ion release into the blood over time. Therefore, TCP or tricalcium phosphate [Ca3(PO4)2] is needed to coat the surface of SS-316L, preventing ion release into the blood and enhancing the biocompatibility of the implant material. In this study, TCP coating was applied to the SS-316L substrate using the electrophoretic deposition technique. The influence of deposition time on changes in microstructure and mechanical properties is the main focus of this study. The results of the coating technique indicate that the deposition yield increases with the deposition time. Morphological testing results show that increasing deposition time improves coating quality by increasing the thickness of the coating layer and preventing layer peeling. The coating process also reveals the accumulation of layers in certain areas and the formation of thin layers in other regions. A deposition time of 30 minutes results in a coating thickness ranging from 48.7 to 57.9 µm. Hardness testing, conducted with indentation loads of 50, 100, and 300 gf, indicates that longer deposition times and higher indentation loads during hardness testing result in reduced material hardness.

Keywords

Tricalcium phosphate; Coating; Electrodeposition; SS316L; microstructure

Full Text:

PDF

References

Ahmed, Y., Rehman, M. A. U. 2020. Improvement in the surface properties of stainless steel via zein/hydroxyapatite composite coatings for biomedical applications. Surfaces and Interfaces. 20: 100589.

AlMangour, B., Luqman, M., Grzesiak, D., Al-Harbi, H., Ijaz, F. 2020. Effect of processing parameters on the microstructure and mechanical properties of Co–Cr–Mo alloy fabricated by selective laser melting. Materials Science and Engineering: A. 792: 139456.

Ananth, K. P., Nathanael, A. J., Jose, S. P., Oh, T. H., Mangalaraj, D., Ballamurugan, A. 2015. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties. Applied Surface Science. 353: 189-199.

Anselme, K. 2000. Osteoblast adhesion on biomaterials. Biomaterials. 21(7): 667-681.

Assadian, M., Rezazadeh Shirdar, M., Idris, M. H., Izman, S., Almasi, D., Taheri, M. M., Abdul Kadir, M. R. 2015. Optimisation of electrophoretic deposition parameters in coating of metallic substrate by hydroxyapatite using response surface methodology. Arabian Journal for Science and Engineering. 40: 923-933.

Bai, Y., Neupane, M. P., Park, I. S., Lee, M. H., Bae, T. S., Watari, F., Uo, M. 2010. Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate. Materials Science and Engineering: C. 30(7): 1043-1049.

Bartmanski, M., Cieslik, B., Glodowska, J., Kalka, P., Pawlowski, L., Pieper, M., Zielinski, A. 2017. Electrophoretic deposition (EPD) of nanohydroxyapatite-nanosilver coatings on Ti13Zr13Nb alloy. Ceramics International. 43(15): 11820-11829.

Besra, L., Liu, M. 2007. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in materials science. 52(1): 1-61.

Boccaccini, A., Keim, S., Ma, R., Li, Y., Zhitomirsky, I. 2010. Electrophoretic deposition of biomaterials. Journal of the Royal Society Interface. 7(suppl_5): S581-S613.

Caicedo, J., Caicedo, H., Ramirez-Malule, H. 2020. Structural and chemical study of β–Tricalcium phosphate-chitosan coatings. Materials Chemistry and Physics. 240: 122251.

Chambard, M., Marsan, O., Charvillat, C., Grossin, D., Fort, P., Rey, C., Bertrand, G. 2019. Effect of the deposition route on the microstructure of plasma-sprayed hydroxyapatite coatings. Surface and Coatings Technology. 371: 68-77.

Chicot, D., Hage, I., Demarecaux, P., Lesage, J. 1996. Elastic properties determination from indentation tests. Surface and Coatings Technology. 81(2-3): 269-274.

Coats, A. M., Zioupos, P., Aspden, R. M. 2003. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcified Tissue International. 73: 66-71.

Dall’Ara, E., Öhman, C., Baleani, M., Viceconti, M. 2007. The effect of tissue condition and applied load on Vickers hardness of human trabecular bone. Journal of biomechanics. 40(14): 3267-3270.

Dorozhkin, S. V. 2015. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Materials Science and Engineering: C. 55: 272-326.

Drevet, R., Benhayoune, H. 2022. Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. Coatings. 12(4): 539.

Drevet, R., Zhukova, Y., Malikova, P., Dubinskiy, S., Korotitskiy, A., Pustov, Y., Prokoshkin, S. 2018. Martensitic transformations and mechanical and corrosion properties of Fe-Mn-Si alloys for biodegradable medical implants. Metallurgical and materials transactions A. 49: 1006-1013.

Farrakhov, R., Melnichuk, O., Parfenov, E., Mukaeva, V., Raab, A., Sheremetyev, V., Prokoshkin, S. 2021Comparison of biocompatible coatings produced by plasma electrolytic oxidation on cp-Ti and Ti-Zr-Nb superelastic alloy. Coatings. 11(4): 401.

Fiume, E., Magnaterra, G., Rahdar, A., Verné, E., Baino, F. 2021Hydroxyapatite for biomedical applications: A short overview. Ceramics. 4(4): 542-563.

Gao, A., Hang, R., Bai, L., Tang, B., Chu, P. K. 2018. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochimica Acta. 271: 699-718.

Ghasemi-Mobarakeh, L., Kolahreez, D., Ramakrishna, S., Williams, D. 2019. Key terminology in biomaterials and biocompatibility. Current Opinion in Biomedical Engineering. 10: 45-50.

Gheno, R., Cepparo, J. M., Rosca, C. E., Cotten, A. 2012. Musculoskeletal disorders in the elderly. Journal of clinical imaging science. 2: 39.

Heimann, R. B. 2016. Plasma-sprayed hydroxylapatite-based coatings: chemical, mechanical, microstructural, and biomedical properties. Journal of thermal spray technology. 25(5): 827-850.

Hosseinalipour, S., Ershad-Langroudi, A., Hayati, A. N., Nabizade-Haghighi, A. 2010. Characterization of sol–gel coated 316L stainless steel for biomedical applications. Progress in Organic Coatings. 67(4): 371-374.

Iost, A., Guillemot, G., Rudermann, Y., Bigerelle, M. 2012. A comparison of models for predicting the true hardness of thin films. Thin Solid Films. 524: 229-237.

Kollath, V. O., Chen, Q., Closset, R., Luyten, J., Traina, K., Mullens, S., Cloots, R. 2013. AC vs. DC electrophoretic deposition of hydroxyapatite on titanium. Journal of the European Ceramic Society. 33(13-14): 2715-2721.

Koumya, Y., Ait Salam, Y., Khadiri, M. E., Benzakour, J., Romane, A., Abouelfida, A., Benyaich, A. 2021Pitting corrosion behavior of SS-316L in simulated body fluid and electrochemically assisted deposition of hydroxyapatite coating. Chemical Papers. 75: 2667-2682.

Kurgan, N. 2013. Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel. Materials & Design (1980-2015). 52: 995-998.

Li, G., Thabane, L., Papaioannou, A., Ioannidis, G., Levine, M. A., Adachi, J. D. 2017. An overview of osteoporosis and frailty in the elderly. BMC musculoskeletal disorders. 18: 1-5.

Louvier-Hernández, J., García, E., Mendoza-Leal, G., Flores-Flores, T., Flores-Martínez, M., Rodríguez de Anda, E., Hernández-Navarro, C. 2021. Effect of the variation of the electrodeposition time of hydroxyapatite/chitosan coatings on AISI 316L SS. Journal of Composite Materials. 55(29): 4421-4430.

Ma, Y., Talha, M., Wang, Q., Zhou, N., Li, Z., Lin, Y. 2022. A multifunctional coating with modified calcium phosphate/chitosan for biodegradable magnesium alloys of implants. New Journal of Chemistry. 46(9): 4436-4448.

Nkonta, D. T., Drevet, R., Fauré, J., Benhayoune, H. 2021. Effect of surface mechanical attrition treatment on the microstructure of cobalt–chromium–molybdenum biomedical alloy. Microscopy Research and Technique. 84(2): 238-245.

Olivier, F., Picard, Q., Delpeux-Ouldriane, S., Chancolon, J., Warmont, F., Sarou-Kanian, V., Bonnamy, S. 2020a. Influence of electrochemical parameters on the characteristics of sono-electrodeposited calcium phosphate-coated carbon fiber cloth. Surface and Coatings Technology. 389: 125507.

Olivier, F., Rochet, N., Delpeux-Ouldriane, S., Chancolon, J., Sarou-Kanian, V., Fayon, F., Bonnamy, S. 2020b. Strontium incorporation into biomimetic carbonated calcium-deficient hydroxyapatite coated carbon cloth: Biocompatibility with human primary osteoblasts. Materials Science and Engineering: C. 116: 111192.

Popescu-Pelin, G., Sima, F., Sima, L., Mihailescu, C., Luculescu, C., Iordache, I., Mihailescu, I. 2017. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study. Applied Surface Science. 418: 580-588.

Safavi, M. S., Surmeneva, M. A., Surmenev, R. A., Khalil-Allafi, J. 2021RF-magnetron sputter deposited hydroxyapatite-based composite & multilayer coatings: A systematic review from mechanical, corrosion, and biological points of view. Ceramics International. 47(3): 3031-3053.

Shao, Z., Xia, J., Zhang, Y., Jiang, H., Li, G. 2016. Preparation of calcium phosphate/chitosan membranes by electrochemical deposition technique. Materials and Manufacturing Processes. 31(1): 53-61.

Sheremetyev, V., Dubinskiy, S., Kudryashova, A., Prokoshkin, S., Brailovski, V. 2022In situ XRD study of stress-and cooling-induced martensitic transformations in ultrafine-and nano-grained superelastic Ti-18Zr-14Nb alloy. Journal of Alloys and Compounds. 902: 163704.

Shirkhanzadeh, M. 1998. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. Journal of Materials Science: Materials in Medicine. 9: 67-72.

Surmenev, R. A., Ivanova, A. A., Epple, M., Pichugin, V. F., Surmeneva, M. A. 2021. Physical principles of radio-frequency magnetron sputter deposition of calcium-phosphate-based coating with tailored properties. Surface and Coatings Technology. 413: 127098.

Surmeneva, M. A., Ivanova, A. A., Tian, Q., Pittman, R., Jiang, W., Lin, J., Surmenev, R. A. 2019. Bone marrow derived mesenchymal stem cell response to the RF magnetron sputter deposited hydroxyapatite coating on AZ91 magnesium alloy. Materials Chemistry and Physics. 221: 89-98.

Trincă, L. C., Burtan, L., Mareci, D., Fernández-Pérez, B. M., Stoleriu, I., Stanciu, T., Souto, R. M. 2021. Evaluation of in vitro corrosion resistance and in vivo osseointegration properties of a FeMnSiCa alloy as potential degradable implant biomaterial. Materials Science and Engineering: C. 118: 111436.

Tulinski, M., Jurczyk, M. 2012Nanostructured nickel-free austenitic stainless steel composites with different content of hydroxyapatite. Applied Surface Science. 260: 80-83.

Vidal, E., Buxadera-Palomero, J., Pierre, C., Manero, J. M., Ginebra, M.-P., Cazalbou, S., Rodríguez, D. 2019Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery. Surface and Coatings Technology. 358: 266-275.

Yuan, J., Dai, B., Cui, X., Li, P. 2023. The effects of electrodeposition temperature on morphology and corrosion resistance of calcium phosphorus coatings on magnesium alloy: comparative experimental and molecular dynamics simulation studies. RSC advances. 13(48): 34145-34156.

Refbacks

  • There are currently no refbacks.