Studi Awal Fabrikasi Sel Surya Murah Menggunakan TiO2 Sebagai Material Penyerap Foton dengan Deposisi Ion-Ion NaCl

Dui Yanto Rahman(1), Rita Sulistyowati(2), Rahmawati Munir(3), Desyana Olenka Margareta(4), Fisca Dian Utami(5),


(1) Program Studi Fisika, Fakultas Sains dan Teknologi Universitas PGRI Palembang, Jalan Jend.Ahmad Yani Ltg.Gotong Royong 9/10 Ulu Palembang 30116 Indonesia. [email protected].
(2) Program Studi Pendidikan Fisika, Fakultas FKIP Universitas PGRI Palembang, Jalan Jend.Ahmad Yani Ltg.Gotong Royong 9/10 Ulu Palembang 30116 Indonesia
(3) Program Studi Fisika, Fakultas MIPA Universitas Mulawarman, Jalan Barong Tongkok No 4, Samarinda 75123 Indonesia
(4) Tadris Fisika, UIN Sayyid Ali Rahmatullah, Jalan Mayor Sjadi No.46, Tulungagung, Jawa Timur 66221 Indonesia
(5) Departemen Fisika Institut Teknologi Bandung, Jl Ganesha 10 Bandung 40132 Indonesia

Abstract

Deposisi partikel tembaga sebagai jembatan elektron bagi sel surya berbasis TiO2 masih meninggalkan permasalahan berupa tidak sederhana dan efektifnya metode yang digunakan. Penelitian ini bertujuan untuk mengganti deposisi partikel tembaga yang menggunakan metode elektroplating dengan deposisi ion NaCl. Sel surya berbasis TiO2 telah difabrikasi dengan  deposisi ion NaCl di antara partikel TiO2. Ion dideposisikan dengan mendispersikan NaCl dalam air sebelum dimasukkan serbuk TiO2. Larutan tersebut kemudian dideposisikan di atas substrat Fluorine Tin Oxide (FTO) menggunakan metode tetesan (droplet) disertai pemanasan dengan suhu 200oC selama satu jam. Kandungan NaCl divariasikan dari 1-9 % relatif terhadap  TiO2. Keberadaan ion di antara partikel penyerap foton dapat meningkatkan efisiensi sel surya dari 0.04% untuk kandungan NaCl sebesar 1% sampai mencapai titik optimum 0.73% untuk kandungan NaCl sebesar 7%. Kandungan NaCl di atas 7 % menyebabkan efisiensi sel surya kembali turun.

Keywords

TiO2, NaCl, Fluorine Tin Oxide, Polymer Electrolyte, Efficiency.

Full Text:

PDF

References

Al-Azri, Z. H. N., AlOufi, M., Chan, A., Waterhouse, G. I. N., & Idriss, H. (2019). Metal particle size effects on the photocatalytic hydrogen ion reduction. ACS Catalysis, 9(5), 3946-3958.

Bai, F. Q., Li, W., & Zhang, H. X. (2017). Theoretical studies of titanium dioxide for dye-sensitized solar cell and photocatalytic reaction. Titanium Dioxide. 229-248.

Bi, J., & Cao, X. (2021). Electrochemical Properties and Thin-Film Morphology of Mn-doped TiO2 Thin Layer Prepared by Electrodeposition Technique and Its application as photocatalyst for Rhodamine B degradation. International Journal Of Electrochemical Science, 16(3).

Bora, T., Kyaw, H. H., Sarkar, S., Pal, S. K., & Dutta, J. (2011). Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process. Beilstein journal of nanotechnology, 2(1), 681-690.

Chang, N. L., Ho-Baillie, A. W. Y., Vak, D., Gao, M., Green, M. A., & Egan, R. J. (2018). Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Solar Energy Materials and Solar Cells, 174, 314-324.

Choi, W.A. Termin, M.R. Hoffmann, Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles, Angew. Chem. Int. Ed. Engl. 33 (1994) 1091–1096.

Colon, G., Maicu, M., Hidalgo, M. S., & Navio, J. A. (2006). Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 67(1-2), 41-51.)

Feng, H., Zhang, M. H., & Liya, E. Y. (2012). Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2. Applied Catalysis A: General, 413, 238-244.

Ghasemi, S., Rahimnejad, S., Setayesh, S. R., Rohani, S., & Gholami, M. R. (2009). Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. Journal of hazardous materials, 172(2-3), 1573-1578.

Guan, H. N., Chi, D. F., Yu, J., & Zhang, S. Y. (2011). Novel photodegradable insecticide W/TiO2/Avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids and Surfaces B: Biointerfaces, 83(1), 148-154.

Guayaquil-Sosa, J. F., Serrano-Rosales, B., Valadés-Pelayo, P. J., & de Lasa, H. (2017). Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Applied Catalysis B: Environmental, 211, 337-348.

Kajitvichyanukul, P. & Sungkaratana, T. (2006). Photocatalytic removal of Zinc (II) in UV-irradiated titania suspensions. Asian Journal on Energy and Environment, 7, 258-265.

Kumaravel, V., Mathew, S., Bartlett, J., & Pillai, S. C. (2019). Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, 244, 1021-1064.

Larumbe, S., Monge, M., & Gómez-Polo, C. (2015). Comparative study of (N, Fe) doped TiO2 photocatalysts. Applied Surface Science, 327, 490-497.

Litter, M. I. (1999). Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114.

Liu, C., Tu, J., Hu, X., Huang, Z., Meng, X., Yang, J., ... & Chen, Y. (2019). Enhanced hole transportation for inverted tin‐based perovskite solar cells with high performance and stability. Advanced Functional Materials, 29(18), 1808059.

Margaretta, D. O., Permadi, K. W., Rahman, D. Y., Utami, F. D., Viridi, S., & Abdullah, M. (2019, April). Antibacterial Investigation Activity of Titania Anatase technical grade on polypropylene sheet. In Journal of Physics: Conference Series (Vol. 1204, No. 1, p. 012051). IOP Publishing.

Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of colloid and interface science, 488, 373-389.

Matsui, H., Okada, K., Kawashima, T., Ezure, T., Tanabe, N., Kawano, R., & Watanabe, M. (2004). Application of an ionic liquid-based electrolyte to a 100mm× 100 mm sized dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 129-135.

Mozaffari, S., Nateghi, M. R., & Zarandi, M. B. (2017). An overview of the Challenges in the commercialization of dye sensitized solar cells. Renewable and Sustainable Energy Reviews, 71, 675-686.

Proctor, C. M., Kuik, M., & Nguyen, T. Q. (2013). Charge carrier recombination in organic solar cells. Progress in Polymer Science, 38(12), 1941-1960.

Rahman, D. Y., Rokhmat, M., Yuliza, E., Sustini, E., & Abdullah, M. (2016). New design of potentially low-cost solar cells using TiO2/graphite composite as photon absorber. International Journal of Energy and Environmental Engineering, 7(3), 289-296.

Rahman, D. Y., Utami, F. D., Amalia, N., Sulistyowati, R., Sustini, E., & Abdullah, M. (2021). Low-cost solar cell using PVA. NaCl polymer electrolyte as hole transport medium and graphite/TiO2 composite as photon-absorbing materials. Materials Today: Proceedings, 44, 3301-3304.

Rahman, D. Y., Utami, F. D., Margaretta, D. O., Amalia, N., Sulistyowati, R., & Abdullah, M. (2020, May). Inexpensive solar cell using TiO2/coffee composite as photon absorbing material. In IOP Conference Series: Materials Science and Engineering (Vol. 833, No. 1, p. 012089). IOP Publishing.

Rokhmat, M., Wibowo, E., & Abdullah, M. (2017). Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Engineering, 170, 72-77.

Saehana, S., Arifin, P., Khairurrijal, & Abdullah, M. (2012). A new architecture for solar cells involving a metal bridge deposited between active TiO2 particles. Journal of Applied Physics, 111(12), 123109.

Sachs, J. D., Woo, W. T., Yoshino, N., & Taghizadeh-Hesary, F. (2019). Importance of green finance for achieving sustainable development goals and energy security. Handbook of green finance: Energy security and sustainable development, 10, 1-10.

Saravanan, R., Gracia, F., & Stephen, A. (2017). Basic principles, mechanism, and challenges of photocatalysis. In Nanocomposites for visible light-induced photocatalysis (pp. 19-40). Springer, Cham.

Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275-291.

Stojadinović, S., Radić, N., Vasilić, R., Tadić, N., & Tsanev, A. (2022). Photocatalytic degradation of methyl orange in the presence of transition metals (Mn, Ni, Co) modified TiO2 coatings formed by plasma electrolytic oxidation. Solid State Sciences, 106896.

Sutisna, Wibowo, E., Rokhmat, M., Rahman, D. Y., Murniati, R., & Abdullah, M. (2017). Batik Wastewater Treatment Using TiO2 Nanoparticles Coated on the Surface of Plastic Sheet. Procedia engineering, 170, 78-83.

Utami, F. D., Rahman, D. Y., Margareta, D. O., & Abdullah, M. (2019, April). Photocatalyst based on TiO2 and its application in organic wastewater treatment using simple spray method. In Journal of Physics: Conference Series (Vol. 1204, No. 1, p. 012086). IOP Publishing.

Utami, F. D., Rahman, D. Y., Margareta, D. O., Rahmayanti, H. D., Munir, R., Sustini, E., & Abdullah, M. (2019, August). TiO2 Photocatalytic Degradation of Methylene Blue Using Simple Spray Method. In IOP Conference Series: Materials Science and Engineering (Vol. 599, No. 1, p. 012026). IOP Publishing.

Valero-Romero, M. J., Santaclara, J. G., Oar-Arteta, L., Van Koppen, L., Osadchii, D. Y., Gascon, J., & Kapteijn, F. (2019). Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chemical Engineering Journal, 360, 75-88.

Xue, M., Huang, L., Wang, J. Q., Wang, Y., Gao, L., Zhu, J. H., & Zou, Z. G. (2008). The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size. Nanotechnology, 19(18), 185604.).

Zainun, A. R., Tomoya, S., Noor, U. M., Rusop, M., & Masaya, I. (2012). New approach for generating Cu2O/TiO2 composite films for solar cell applications. Materials Letters, 66(1), 254-256.

Refbacks

  • There are currently no refbacks.




Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats