Pemodelan Distribusi Bintang-Bintang pada Gugus Bola dengan Densitas Plummer Isotropik

Fikri Yudistira Eka Praja Untarto(1), Hasanuddin Hasanuddin(2), Bintoro Siswo Nugroho(3),


(1) Program Studi Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tanjungpura
(2) Program Studi Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tanjungpura
(3) Program Studi Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tanjungpura

Abstract

Simulasi yang berkaitan dengan gugus bola sangat penting dilakukan untuk mengetahui evolusi dan dinamika gugus bola. Dalam penelitian ini, kami mendeskripsikan sebuah model gugus bola dengan densitas Plummer isotropik melalui teknik sampling rejection yang mirip dengan kali code.  Kemudian, kami membuat modul program dalam bahasa pemrograman Python. Model yang dihasilkan oleh modul ini sesuai dengan beberapa parameter teoretis Plummer. Walaupun model Plummer ini hanya cocok untuk daerah di sekitar inti dari gugus bola hasil observasi, tetapi model Plummer distribusi bintang-bintang dapat digunakan sebagai kondisi awal gugus bola dalam simulasi gugus bola.  

Keywords

gugus bola; model Plummer; sampling

Full Text:

PDF

References

Bailey, S. I. (1916). Globular Clusters. Annals of Harvard College Observatory, 76(4), 43–82.

Binney, J., & Tremaine, S. (2008). Galactic Dynamics: Second Edition. Princeton University Press.

Heggie, D., & Hut, P. (2003). The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics. In The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics, by Douglas Heggie and Piet Hut.~ Cambridge University Press, 2003, 372 pp. Cambridge University Press.

Howell, J., Guhathakurta, P., & Gilliland, R. (2000). Resolving the Controversy over the Core Radius of 47~Tucanae ({NGC} 104)1,2. Publications of the Astronomical Society of the Pacific, 112(775), 1200–1211.

https://www.tiobe.com/tiobe-index/. (n.d.).

Hurley, J. R., Pols, O. R., Aarseth, S. J., & Tout, C. A. (2005). A complete N-body model of the old open cluster M67. Monthly Notices of the Royal Astronomical Society, 363(1), 293–314.

Hut, P., & Makino, J. (2007). The Art of Computational Science: The Kali Code vol.11. http://www.artcompsci.org/kali/vol/plummer/title.html

Karam, J., & Sills, A. (2022). Modelling star cluster formation: mergers. Monthly Notices of the Royal Astronomical Society, 513(4), 6095–6104. https://doi.org/10.1093/mnras/stac1298

King, I. (1962). The structure of star clusters. I. an empirical density law. Astronomical Journal, 67, 471.

Law, D. R., Johnston, K. V, & Majewski, S. R. (2005). A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails. Astrophysical Journal, 619(2), 807–823.

Miocchi, P., Lanzoni, B., Ferraro, F. ~R., Dalessandro, E., Vesperini, E., Pasquato, M., Beccari, G., Pallanca, C., & Sanna, N. (2013). Star Count Density Profiles and Structural Parameters of 26 Galactic Globular Clusters. Astrophysical Journal, 774(2), 151.

Pallanca, C., Lanzoni, B., Ferraro, F. R., Casagrande, L., Saracino, S., Purohith Bhaskar Bhat, B., Leanza, S., Dalessandro, E., & Vesperini, E. (2021). A New Identity Card for the Bulge Globular Cluster NGC 6440 from Resolved Star Counts. Astrophysical Journal, 913(2), 137.

Plummer, H. ~C. (1911). On the problem of distribution in globular star clusters. Monthly Notices of the Royal Astronomical Society, 71, 460–470.

Portegies Zwart, S., McMillan, S. ~L. ~W., van Elteren, E., Pelupessy, I., & de Vries, N. (2013). Multi-physics simulations using a hierarchical interchangeable software interface. Computer Physics Communications, 184(3), 456–468.

Rejkuba, M. (2012). Globular cluster luminosity function as distance indicator. Astrophysics and Space Science, 341(1), 195–206.

Sohn, S. T., Majewski, S. R., Muñoz, R. R., Kunkel, W. E., Johnston, K. V, Ostheimer, J. C., Guhathakurta, P., Patterson, R. J., Siegel, M. H., & Cooper, M. C. (2007). Exploring Halo Substructure with Giant Stars. X. Extended Dark Matter or Tidal Disruption?: The Case for the Leo I Dwarf Spheroidal Galaxy. Astrophysical Journal, 663(2), 960–989.

Valcin, D., Jimenez, R., Verde, L., Bernal, J. L., & Wandelt, B. D. (2021). The age of the Universe with globular clusters: reducing systematic uncertainties. Journal of Cosmology and Astroparticle Physics, 2021(8), 17.

Watson, A. M., Mould, J. R., Gallagher, J. S. . I., Ballester, G. E., Burrows, C. J., Casertano, S., Clarke, J. T., Crisp, D., Griffiths, R. E., Hester, J. J., Hoessel, J. G., Holtzman, J. A., Scowen, P. A., Stapelfeldt, K. R., Trauger, J. T., Westphal, J. A., Watson, A. M., Mould, J. R., Gallagher, J. S. . I., … Westphal, J. A. (1994). Far-Ultraviolet Imaging of the Globular Cluster NGC 6681 with WFPC2. Astrophysical Journal Letters, 435, L55.

Wilkinson, M. ~I., Hurley, J. ~R., Mackey, A. ~D., Gilmore, G. ~F., & Tout, C. ~A. (2003). Core radius evolution of star clusters. Monthly Notices of the Royal Astronomical Society, 343(3), 1025–1037.

Refbacks

  • There are currently no refbacks.




Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats