Pengaruh Ketebalan Lapisan Film Tipis TiO2 Nanopartikel terhadap Sifat Optik dan Listrik Sel Surya Perovskite CH3NH3PbI3

Hasna Aisyah Rastiadi(1), Endi Suhendi(2), Eka Cahya Prima(3),


(1) Solar Energy Materials Laboratory, Program Studi Fisika, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia
(2) Solar Energy Materials Laboratory, Program Studi Fisika, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia
(3) Solar Energy Materials Laboratory, Program Studi Fisika, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia

Abstract

Sel surya perovskite merupakan sel surya yang memanfaatkan proses fotoelektrokimia dalam mengubah energi foton menjadi energi listrik, yang ramah lingkungan, fabrikasi mudah, dan biaya penelitian rendah. Penelitian ini difokuskan pada penentuan variasi ketebalan dari lapisan film tipis TiO2 sebagai ETL serta pengaruhnya terhadap sifat optik dan sifat listrik pada sel surya perovskite. Karakterisasi sifat optik diperoleh dari hasil absorbansi menggunakan UV-Vis Spectrophotometer, sedangkan karakterisasi sifat listrik meliputi nilai ???, ??, ???, dan ? menggunakan Standard Solar Simulator 1.5 AM. Hasil variasi ketebalan lapisan TiO2 sebesar 41,75 µm, 28,50 µm, 19,00 µm, dan 10,00 µm berdasarkan kecepatan spin coating 3000 rpm, 4000 rpm, 5000 rpm, dan 6000 rpm selama 20 detik yang menghasilkan formulasi setiap 1 rpm dari spin coating dihasilkan ketebalan sebesar -0,0105 + 71,95 µm. Nilai absorbansi tertinggi sebesar 2,83 a.u didapatkan pada sampel dengan ketebalan 41 µm. Nilai efisiensi tertinggi sebesar 1,26 x 10-7% pada sampel dengan ketebalan 10 µm, dengan nilai ??? 0,30 x 10-6 mA/cm2, ??? 0,0656 V, FF 23 %. Sifat listrik dari sel surya perovskite dipengaruhi oleh ketebalan lapisan TiO2, semakin tipis lapisan TiO2 semakin tinggi nilai efisensi yang dihasilkan.

Keywords

Perovskite Solar Cell; TiO2 Thin Film; TiO2 Thickness

Full Text:

PDF

References

Afzali, M., Mostafavi, A., & Shamspur, T. (2020). Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer. Organic Electronics, 86. https://doi.org/10.1016/j.orgel.2020.105907

Anderson, A. L., & Binions, R. (2014). The effect of Tween® Surfactants in sol-gel processing for the production of TiO 2 thin films. Coatings, 4(4), 796–809. https://doi.org/10.3390/coatings4040796

Arshad, Z., Khoja, A. H., Shakir, S., Afzal, A., Mujtaba, M. A., Soudagar, M. E. M., Fayaz, H., Saleel C, A., Farukh, S., & Saeed, M. (2021). Magnesium doped TiO2as an efficient electron transport layer in perovskite solar cells. Case Studies in Thermal Engineering, 26. https://doi.org/10.1016/j.csite.2021.101101

Cherrette, V. L., Hutcherson, C. J., Barnett, J. L., & So, M. C. (2018). Fabrication and Characterization of Perovskite Solar Cells: An Integrated Laboratory Experience. Journal of Chemical Education, 95(4), 631–635. https://doi.org/10.1021/acs.jchemed.7b00299

Choudhary, P., & Srivastava, R. K. (2019). Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities. In Journal of Cleaner Production (Vol. 227, pp. 589–612). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.04.107

Danilchuk, D., & Dahal, L. (n.d.). Development of Low-cost Hybrid Perovskite Solar Cells.

El-Adawi, M. A. K., & Al-Nuaim, I. A. (2014). New Approach to Modeling a Solar Cell in Relation to Its Efficiency—Laplace Transform Technique. Optics and Photonics Journal, 04(08), 219–227. https://doi.org/10.4236/opj.2014.48022

Huang, B. J., Guan, C. K., Huang, S. H., & Su, W. F. (2020). Development of once-through manufacturing machine for large-area Perovskite solar cell production. Solar Energy, 205, 192–201. https://doi.org/10.1016/j.solener.2020.05.005

Lee, D. G., Kim, M. cheol, Kim, B. J., Kim, D. H., Lee, S. M., Choi, M., Lee, S., & Jung, H. S. (2019). Effect of TiO2 particle size and layer thickness on mesoscopic perovskite solar cells. Applied Surface Science, 477, 131–136. https://doi.org/10.1016/j.apsusc.2017.11.124

Liu, Y., Li, Y., Wu, Y., Yang, G., Mazzarella, L., Procel-Moya, P., Tamboli, A. C., Weber, K., Boccard, M., Isabella, O., Yang, X., & Sun, B. (2020). High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. In Materials Science and Engineering R: Reports (Vol. 142). Elsevier Ltd. https://doi.org/10.1016/j.mser.2020.100579

Nair, S., Patel, S. B., & Gohel, J. V. (2020). Recent trends in efficiency-stability improvement in perovskite solar cells. In Materials Today Energy (Vol. 17). Elsevier Ltd. https://doi.org/10.1016/j.mtener.2020.100449

Noori, L., Hoseinpour, V., & Shariatinia, Z. (2022). Optimization of TiO2 paste concentration employed as electron transport layers in fully ambient air processed perovskite solar cells with a low-cost architecture. Ceramics International, 48(1), 320–336. https://doi.org/10.1016/j.ceramint.2021.09.107

Pala, L. P. R., Uday, V., Gogoi, D., & Peela, N. R. (2020). Surface and photocatalytic properties of TiO2thin films prepared by non-aqueous surfactant assisted sol-gel method. Journal of Environmental Chemical Engineering, 8(5). https://doi.org/10.1016/j.jece.2020.104267

Patwardhan, S., Cao, D. H., Hatch, S., Farha, O. K., Hupp, J. T., Kanatzidis, M. G., & Schatz, G. C. (2015). Introducing Perovskite Solar Cells to Undergraduates. In Journal of Physical Chemistry Letters (Vol. 6, Issue 2, pp. 251–255). American Chemical Society. https://doi.org/10.1021/jz502648y

Salman, S. H., Shihab, A. A., & Elttayef, A. H. K. (2019). Studying the effect of the type of substrate on the structural ,morphology and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Energy Procedia, 157, 199–207. https://doi.org/10.1016/j.egypro.2018.11.181

Shakir, S., Khan, Z. S., Ali, A., Akbar, N., & Musthaq, W. (2015). Development of copper doped titania based photoanode and its performance for dye sensitized solar cell applications. Journal of Alloys and Compounds, 652, 331–340. https://doi.org/10.1016/j.jallcom.2015.08.243

Sharif, A., Meo, M. S., Chowdhury, M. A. F., & Sohag, K. (2021). Role of solar energy in reducing ecological footprints: An empirical analysis. Journal of Cleaner Production, 292. https://doi.org/10.1016/j.jclepro.2021.126028

Slameršak, A., Kallis, G., & Neill, D. W. O. (2022). Energy requirements and carbon emissions for a low-carbon energy transition. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33976-5

Suparwoko, & Qamar, F. A. (2022). Techno-economic analysis of rooftop solar power plant implementation and policy on mosques: an Indonesian case study. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08968-6

Wang, S., Zhu, Y., Liu, B., Wang, C., & Ma, R. (2019). Enhanced performance of mesostructured perovskite solar cells with a composite Sn4+-doped TiO2 electron transport layer. Ionics, 25(9), 4509–4516. https://doi.org/10.1007/s11581-019-02990-x

Yazid, S. A., Rosli, Z. M., & Juoi, J. M. (2019). Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol-gel route. Journal of Materials Research and Technology, 8(1), 1434–1439. https://doi.org/10.1016/j.jmrt.2018.10.009

Refbacks

  • There are currently no refbacks.




Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats