Application of Pyramidal Decomposition to Improve Digital Radiography Image Quality

Rudi Setiawan(1), Susilo Susilo(2),


(1) Radiodiagnostic and Radiotherapy Engineering, Sekolah Tinggi Ilmu Kesehatan An Nasher, Cirebon, Indonesia
(2) Biomedical Engineering, Universitas Dian Nuswantoro, Semarang, Indonesia

Abstract

As an effort to create innovation in the world of radiography, it is necessary to develop technology in software. This effort is to improve image quality by using pyramidal decomposition. This digital image decomposition is referred to as pyramid decomposition. The original image is decomposed into several frequency bands, repeatedly divided into high-pass components and low-pass components. The high-pass component is set aside while the low-pass image is subjected to subsequent division. This creates a kind of "3D" stack of image layers. Each layer is at a lower frequency and therefore fuzzier. This processing was pioneered by Philips Healthcare as UNIK (Unified Image Quality Enhancement), and by Agfa as MUSICA (Multi-Scale Image Contrast Amplification) with various innovations. The test image uses digital radiography images resulting from innovation from 14bit RAW digital conversion into JPG format. Image quality is calculated using Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR). The pyramidal decomposition application succeeded in improving the quality of digital radiography images with an average MSE reduction value of 0.018 and an average PSNR increase of 22.114 dB. Visually, there is a constant increase in contrast and detail, so it can be applied in the medical field.

Keywords

pyramidal decomposition, digital radiography, MSE, PSNR

Full Text:

PDF

References

Ahmed, H. S. S., & Nordin, M. J. (2011) improving diagnostic viewing of medical images using enhancement algorithms. Journal of Computer Science,7 (12): 1831-1838.

Asif, M. S., & Mahesh R. J. (2023). On the application of log compression and enhanced denoising in contrast enhancement of digital radiography images. Arxiv, 2304.04018v2.

Brettle, D. S., & Carmichael, F. (2011). The impact of digital image processing artefacts mimicking pathological features associated with restorations. British Dental Journal, 211, 167-170.

Carroll, Q. B. (2013). Radiography in the digital age: physics, exposure, radiation biology. Radiology, 267 (2).

Fan, H., Durko, H. L., Moore, S. K., Moore, J. W., Miller, B. W., Furenlid, L. R., Pradhan, S., & Barrett, H. H. (2010). DR with a DSLR: digital radiography with a digital single-lens reflex camera. Proceedings of Spie--the International Society for Optical Engineering, 1-12.

Hayat, N., & Imran, M. (2019). Multi-exposure image fusion technique using multi-resolution blending. IET Image Process, 13, 2554-2561.

Irrera, P., Bloch, I., & Delplanque, M. (2014). Contrast enhancement of micro dose x-ray images. 2014 IEEE 11th International Symposium on Biomedical Imaging, 489-492.

Iswardani, A., & Hidayat, W. (2018). Mammographic image enhancement using digital image processing technique. International Journal of Computer Science and Information Security, 16(5).

Kurnianto, K., Putra, I. M., & Susila I. P. (2014). Perekayasaan perangkat radiografi digital untuk industri. Prosiding Pertemuan Ilmiah Perekayasaan Perangkat Nuklir, 261-274.

Kaur, G. (2013). An enhancement of classical unsharp mask filter for contrast and edge preservation. International Journal of Engineering Sciences & Research Technology, 2277-9655.

Kumari, S., Mahesh, M., & Srikant, L. (2014). Image fusion techniques based on pyramid decomposition. International Journal of Artificial Intelligence and Mechatroni, 2(4)

Lanca L., & Silva A. (2013). Digital imaging systems for plain radiography. Springer Science Business Media New York.

Munir, R. 2004, Pengolahan Citra Digital dengan Pendekatan Algoritmik, Informatika Bandung.

Sara, U., Morium, A., Mohammad, S. U. (2019). Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. Journal of Computer and Communications, 7(3), 8-18.

Sharma1, A. M., Ayush, D., Bhawna, G., Renu, V., & Sunil, A. (2020). From pyramids to state-of-the-art: a study and comprehensive comparison of visible–infrared image fusion techniques. IET Image Process, 14(9), 1671-1689.

Sreelakshmi, S., & Anoop, K. J. (2015). Image contrast enhancement using pyramidal transforms and svd. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(7).

Susilo, S., Budi W. S., Kusminarto, K. & Suparta, G.B. (2013). Kajian radiografi digital tulang tangan. Jurnal Berkala Fisika, 16(1), 15 – 20.

Susilo, S., Budi W. S., & Kusminarto, K. (2011). Analisis homogenitas bahan acrylic dengan teknik radiografi sinar-x, Jurnal Fisika, 1(1), 29-34.

Susilo, S., Supriyadi, S., Sunarno, S., Setiawan, R., & Wibowo, E. (2013). Kajian sistem radiografi digital sebagai pengganti sistem computed radiography yang mahal. Jurnal Fisika Indonesia. 17(50), 40-43

Susilo, S., Supriyadi, S., Sunarno, S., & Setiawan, R. (2014) rancang bangun sistem penangkap gambar radiograf digital berbasis kamera DSLR. Jurnal Pendidikan Fisika Indonesia, 1(1), Hal 66-74.

Wu, S., Yu, S., Yang, Y., & Xie, Y. (2013). Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology. Computational And Mathematical Methods In Medicine. 2013, 1-8.

Refbacks

  • There are currently no refbacks.




Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. View My Stats