Treatment of Coal Mine Acid Water Using Nf270 Membrane as Environmentally Friendly Technology

K. Kiswanto, H. Susanto, S. Sudarno

Abstract

Ex-mining pond water is widely used for the daily needs of the people these days, such as bathing, washing, and even drinking. Over time, it turns out that coal mine acid water has polluted the environment. The use of membrane technology to produce water that meets drinking water quality standards by the Minister of Health Regulation No. 492 of 2010 can be a solution to this problem. The NF270 membrane is a membrane process between reverse osmosis and ultrafiltration, which has a lower flux and operating pressure below 0.2-1.53 Mpa compared to reverse osmosis. Membrane NF270 is used for the reclamation of wastewater, water purification and softening, seawater desalination, and others. Its high rejection of organic molecules with a molecular weight of 200-2000 Da ions and multivalent can remove suspended solids, natural organic matter, bacteria, viruses, salts, and divalent ions contained in water, including coal mine acid water. The purpose of treating acid mine drainage with the NF270 membrane is to remove COD, TSS, TDS, and Fe metals. The NF270 membrane was used in this study to treat the coal mine acid water of PT. Bukit Asam. The performance of the NF270 process was assessed from the effect of pressure (4, 5, and 6 bar) on the flux and rejection rate of each parameter in a single solution, mixed and aqueous coal mine acid solution. The optimum pressure of the NF270 membrane for all parameters was 6 bar. This optimum pressure was then used to compare the phenomenon of flux that occurred and the level of rejection produced in the original sample of coal mine acid water. In the original coal mine acid water, there was a significant decrease in flux due to fouling deposition on the membrane surface. This phenomenon of decreasing flux was caused by fouling and polarization concentration. The rejection rates produced for the parameters of COD, TSS, TDS, and Fe with NF270 membranes were 56.4-93.1%; 78.5-100%; 43-69.3%; 67-100% respectively. Treated coal mine acid water using NF270 membrane technology can be used as drinking water that meets the standards of the Indonesian Ministry of Health Regulation. Thus, NF270 membrane technology can be used to process coal mine acid water into environmentally friendly drinking water.

Keywords

rejection; flux; coal mine acid water; NF270 membrane

Full Text:

PDF

References

Afrianty, C., Gustin, L., & Dewi, T. K. (2012). Pengolahan Limbah Air Asam Tambang Menggunakan Teknologi Membran Keramik. Jurnal Teknik Kimia, 18(3).

Almazán, J. E., Romero-Dondiz, E. M., Rajal, V. B., & Castro-Vidaurre, E. F. (2015). Nano-filtration of glucose: Analysis of parameters and membrane characterization. Chemical engineering research and design, 94, 485-493.

Amalia, D. A., Susanto, H., & Istirokhatun, T. (2016). Pengolahan Limbah Lindi Menggunakan Membran Nanofiltrasi Nf99 (Doctoral dissertation, Diponegoro University).

Al-Zoubi, H., Rieger, A., Steinberger, P., Pelz, W., Haseneder, R., & Härtel, G. (2010). Optimization study for treatment of acid mine drainage using membrane technology. Separation Science and Technology, 45(14), 2004-2016.

Ashari, A., Budianta, D., & Setiabudidaya, D. (2015). Efektivitas elektroda pada proses elektrokoagulasi untuk pengolahan air asam tambang. Jurnal Penelitian Sains, 17(2).

Bargeman, G., Westerink, J. B., Miguez, O. G., & Wessling, M. (2014). The effect of NaCl and glucose concentration on retentions for nanofiltration membranes processing concentrated solutions. Separation and purification technology, 134, 46-57.

Chang, H., Liang, H., Qu, F., Shao, S., Yu, H., Liu, B., ... & Li, G. (2016). Role of backwash water composition in alleviating ultrafiltration membrane fouling by sodium alginate and the effectiveness of salt backwashing. Journal of Membrane Science, 499, 429-441.

Christy, F. T., Susanto, H., & Sudarno, S. (2015). Pengolahan Limbah Lindi Menggunakan Membran Nanofiltrasi Nf270 (Doctoral dissertation, Diponegoro University).

Dalwani, M. (2011). Thin film composite nanofiltration membranes for extreme conditions. Gilden Print Drukkerij, Enschede, The Netherland.

Dandautiya, R. (2012). Comparative study of existing leachate treatment methods. In International Conference on Recent Trends in Engineering and Technology (ICRTET) (pp. 192-202).

Dewi, S. S. (2015). Nanofiltrasi sebagai “Best Available Technology†untuk Pengolahan Air.

Fane, A. T., Wang, R., & Jia, Y. (2011). Membrane technology: past, present and future. In Membrane and Desalination Technologies (pp. 1-45). Humana Press, Totowa, NJ.

Galanakis, C. M., Fountoulis, G., & Gekas, V. (2012). Nano-filtration of brackish groundwater by using a polypiperazine membrane. Desalination, 286, 277-284.

Gautama, R. S. (2014). Pembentukan, pengendalian dan pengelolaan air asam tambang. Bandung: Institut Teknologi Bandung.

Gomes, S., Cavaco, S. A., Quina, M. J., & GandoFerreira, L. M. (2010). Nanofiltration process for separating Cr (III) from acid solutions: experimental and modelling analysis. Desalination, 254(1-3), 80-89.

Hao, Y., Moriya, A., Maruyama, T., Ohmukai, Y., & Matsuyama, H. (2011). Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane. Journal of membrane science, 376(1-2), 247-253.

Hilal, N., Kochkodan, V., Al Abdulgader, H., & Johnson, D. (2015). A combined ion exchange–nanofiltration process for water desalination: II. Membrane selection. Desalination, 363, 51-57.

Hidalgo, A. M., León, G., Gómez, M., Murcia, M. D., Gómez, E., & Gómez, J. L. (2013). Application of the Spiegler–Kedem–Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes. Desalination, 315, 70-75.

Ji, Y., Qian, W., Yu, Y., An, Q., Liu, L., Zhou, Y., & Gao, C. (2017). Recent developments in nanofiltration membranes based on nanomaterials. Chinese Journal of Chemical Engineering, 25(11), 1639-1652.

Kedang, Y. I. (2019). Membran Nanofiltrasi untuk Aplikasi Pemisah Zat. Jurnal Saintek Lahan Kering, 2(1), 27-29.

Kiswanto, K., Rahayu, L. N., & Wintah, W. (2019). Pengolahan Limbah Cair Batik Menggunakan Teknologi Membran Nanofiltrasi Di Kota Pekalongan. Jurnal Litbang Kota Pekalongan, 17.

Kootenaei, F. G., & Rad, H. A. (2013). Treatment of hospital wastewater by novel nanofiltration membrane bioreactor (NF-MBR). Iranica Journal of Energy and Environment, Special Issue on

Nanotechnology, 4(1), 60-67.

Madsen, H. T., & Søgaard, E. G. (2014). Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products. Separation and Purification Technology, 125, 111-119.

Motsa, M. M., Mamba, B. B., D’Haese, A., Hoek, E. M., & Verliefde, A. R. (2014). Organic fouling in forward osmosis membranes: The role of feed solution chemistry and membrane structural properties. Journal of Membrane Science, 460, 99-109.

Mulder, M. (1996). Preparation of synthetic membranes. In Basic principles of membrane technology (pp. 71-156). Springer, Dordrecht.

Mulder, M. (2012). Basic principles of membrane technology. Springer Science & Business Media.

Nasir, S., Purba, M., & Sihombing, O. (2014). Pengolahan air asam tambang dengan menggunakan membran keramik berbahan tanah liat, tepung jagung dan serbuk besi. Jurnal Teknik Kimia, 20(3).

Oreamuno, F. A. P. (2011). Microscopic characterization of the nanostructure of polyamide thin films in reverse osmosis and nanofiltration membranes (Doctoral dissertation, Stanford University).

Peters, T. (2010). Membrane technology for water treatment. Chemical engineering & technology, 33(8), 1233-1240.

Said, N. I. (2014). Teknologi Pengolahan Air Asam Tambang Batubara “Alternatif Pemilihan Teknologiâ€. Jurnal Air Indonesia, 7(2).

Salehi, F. (2014). Current and future applications for nanofiltration technology in the food processing. Food and Bioproducts Processing, 92(2), 161-177.

Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. (2013). Nano-filtration for water and wastewater treatment-a mini review. Drinking Water Engineering and Science.

Simon, A., Price, W. E., & Nghiem, L. D. (2013). Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles. Separation and Purification Technology, 113, 42-50.

Susanto, H. (2011). Teknologi Membran. Semarang: Badan Penerbit Universitas Diponegoro.

Susanto, H. (2018). Characterization Of Coal Acid Water In Void Pools Of Coal Mining In South Kalimantan. In E3S Web of Conferences (Vol. 73, p. 05030). EDP Sciences.

Sun, H., Peng, Y., & Shi, X. (2015). Advanced treatment of landfill leachate using anaerobic–aerobic process: Organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite. Bioresource technology, 177, 337-345.

Teixeira, M. R., Rosa, S. M., & Sousa, V. (2011). Natural organic matter and disinfection byproducts formation potential in water treatment. Water resources management, 25(12), 3005-3015.

Tu, N. P. (2013). Role of charge effects during membrane filtration. Ghent. Universiteit Gent.

Wenten, I. G., Khoiruddin, K., Aryanti, P. T. P., & Hakim, A. N. (2010). Pengantar Teknologi Membran. Teknik Kimia Institut Teknologi Bandung.

Wenten, I. G. (2015). Teknologi Membran: Prospek dan Tantangannya. Teknik Kimia Institut Teknologi Bandung.

Yildirim, Y., TopaloÄŸlu, A. K., Ince, M., & Kajama, M. N. (2019). The use of NF and RO membrane system for reclamation and recycling of wastewaters generated from a hard coal mining. Nigerian Journal of Technology, 38(4), 1048-1055.

Zaman, B. (2013). Efisiensi Pengolahan Amonium Berkonsentrasi Tinggi Dalam Lindi Pada Sistem Evapotranspirasi-Anaerobik Secara

Kontinyu.

Zamani, M. F., Istirokhatun, T., & Susanto, H. (2015). Pengolahan Leachate Tempat Pembuangan Akhir Sampah Menggunakan Kombinasi Teknologi Membran Mikrofiltrasi Dan Nanofiltrasi (Doctoral dissertation, Diponegoro University).

Refbacks

  • There are currently no refbacks.