Sophisticated Thinking Blended Laboratory (STB-LAB) Learning Model: Implications on Virtual and Real Laboratory for Increasing Undergraduate Student's Argumentation Skills

R. D. Agustina, R. P. Putra

Abstract

Laboratory activities require scientific processes. The crucial scientific process in laboratory activities is aligning with 21st Century skills. Argumentation skills in laboratory activities are needed to make laboratory activities run efficiently, effectively, and without misinformation. Sophisticated Thinking Blended Laboratory (STB-LAB) in laboratory activities is considered capable of improving argumentation skills because of its syntax, disposition, and argumentation stage, allowing students to train their argumentation skills. This study intends to determine whether the STB-LAB learning model can improve students' argumentation skills in virtual and real laboratory activities. The method uses quantitative research with a one-group pretest-posttest design in which the N-Gain will be generated from the pretest and posttest, and find the difference in pretest and posttest, t-test using independent sample t-test, and effect size using Cohen's D. The results show that N-Gain obtained in virtual laboratory activities, only two aspects were categorized as quite effective, namely warrant, and backing aspects. In addition, N-Gain obtained in real laboratory activities only has three aspects categorized as quite effective: evidence, warrant, and rebuttal. The hypothesis obtained in both laboratory activities is 0.000 at Sig. (2-tailed), and the Effect Size obtained in both laboratory activities is 0.91 and 0.79. Thus, STB-LAB can improve argumentation skills using two media, with the virtual laboratory getting the highest results in its improvement. This shows that STB-LAB is appropriate for improving argumentation skills at the undergraduate level.

Keywords

argumentation skills; real laboratory; sophisticated thinking blended laboratory; STB-LAB; virtual laboratory

Full Text:

PDF

References

Adib-Hajbaghery, M., & Karimi, Z. (2018). Comparing the effects of face-to-face and video-based education on inhaler use: A randomized, two-group pretest/posttest study. Iranian Journal of Nursing and Midwifery Research, 23(5), 352.

Agustina, R. D., Putra, R. P., & Listiawati, M. (2022). Development of Sophisticated Thinking Blending Laboratory (STB-LAB) to Improve 4C Skills for Student as Physics Teacher Candidate. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 8(1), 65–82.

Antonio, R. P., & Prudente, M. S. (2021). Metacognitive Argument-Driven Inquiry in Teaching Antimicrobial Resistance: Effects on Students’ Conceptual Understanding and Argumentation Skills. Journal of Turkish Science Education, 18(2), 192–217.

Bertling, M., Jackson, G. T., Oranje, A., & Owen, V. E. (2015). Measuring argumentation skills with game-based assessments: Evidence for incremental validity and learning. International Conference on Artificial Intelligence in Education, 545–549.

Bråten, I., Ferguson, L. E., Strømsø, H. I., & Anmarkrud, Ø. (2014). Students working with multiple conflicting documents on a scientific issue: Relations between epistemic cognition while reading and sourcing and argumentation in essays. British Journal of Educational Psychology, 84(1), 58–85.

Buber, A., & Coban, G. U. (2017). The effects of learning activities based on argumentation on conceptual understanding of 7th graders about “force and motion” unit and establishing thinking friendly classroom environment. European Journal of Educational Research, 6(3), 367–384.

Budai, T., & Kuczmann, M. (2018). Towards a modern, integrated virtual laboratory system. Acta Polytechnica Hungarica, 15(3), 191–204.

Cesariyanti, Y., Fitriani, A. N., Hasanah, A. R., Nurhayati, A., Putra, R. P., Agustina, R. D., & Malik, A. (2022). Analisis Kemampuan Berpikir Kritis pada Praktikum Fisika Medan Magnet dengan Model PODE Berbasis Vlab. WaPFi (Wahana Pendidikan Fisika), 7(1), 59–66.

Cetin, P. S. (2014). Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills. Research in Science & Technological Education, 32(1), 1–20.

Clark, D., Sampson, V., Stegmann, K., Marttunen, M., Kollar, I., Janssen, J., Erkens, G., Weinberger, A., Menekse, M., & Laurinen, L. (2010). Online learning environments, scientific argumentation, and 21st century skills. In E-Collaborative knowledge construction: Learning from computer-supported and virtual environments (pp. 1–39). IGI Global.

Crowell, A., & Kuhn, D. (2014). Developing dialogic argumentation skills: A 3-year intervention study. Journal of Cognition and Development, 15(2), 363–381.

Demircioğlu, T. (2022). The effect of online argumentation in open-ended physics experiments on academic achievement and the change in argumentation abilitie: Online argumentation in open-ended physics experiments. International Journal of Curriculum and Instruction, 14(2), 1561–1577.

Dvořák, W., Greßler, A., Rapberger, A., & Woltran, S. (2021, May). The complexity landscape of claim-augmented argumentation frameworks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 7, pp. 6296-6303).

Erika, F., & Rahmadani, A. (2021). Development of 21st Century Skills-Based Stereochemistry Learning Tools to Train Students’ Argumentation Skills. Jurnal Kependidikan: Jurnal Hasil Penelitian Dan Kajian Kepustakaan Di Bidang Pendidikan, Pengajaran Dan Pembelajaran, 7(4), 822–833.

Fadaei, A. S. (2021). Comparing the Effects of Cookbook and Non-Cookbook Based Lab Activities in a Calculus-Based Introductory Physics Course. International Journal of Physics and Chemistry Education, 13(4), 65–72.

Faize, F. A., Husain, W., & Nisar, F. (2017). A critical review of scientific argumentation in science education. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 475–483.

Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., Neuhaus, B., Dorner, B., Pankofer, S., & Fischer, M. (2014). Scientific reasoning and argumentation: advancing an interdisciplinary research agenda in education. Frontline Learning Research, 2(3), 28–45.

Goldman, S. R., Britt, M. A., Brown, W., Cribb, G., George, M., Greenleaf, C., Lee, C. D., Shanahan, C., & READi, P. (2016). Disciplinary literacies and learning to read for understanding: A conceptual framework for disciplinary literacy. Educational Psychologist, 51(2), 219–246.

Hakim, A., Sahmadesti, I., & Hadisaputra, S. (2020). Promoting students’ argumentation skills through development of science teaching materials based on guided inquiry models. Journal of Physics: Conference Series, 1521(4), 42117.

Ismet, I. (2017). Disain Model Multirepresentasi Pada Perkuliahan Pendahuluan Fisika Zat Padat untuk Mengembangkan Kemampuan Berargumentasi. Seminar Nasional Pendidikan IPA Tahun 2021, 1(1), 109–115.

Jonassen, D. H., & Carr, C. S. (2020). Mindtools: Affording multiple knowledge representations for learning. In Computers as cognitive tools, volume two: No more walls (pp. 165–196). Routledge.

Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013).

Argumentation in the chemistry laboratory: Inquiry and confirmatory experiments. Research in Science Education, 43(1), 317–345.

Kim, Y. J., & Cribbie, R. A. (2018). ANOVA and the variance homogeneity assumption: Exploring a better gatekeeper. British Journal of Mathematical and Statistical Psychology, 71(1), 1–12.

Kind, P. M., Kind, V., Hofstein, A., & Wilson, J. (2011). Peer Argumentation in the School Science Laboratory—Exploring effects of task features. International Journal of Science Education, 33(18), 2527–2558.

Kraft, M. A. (2020). Interpreting effect sizes of education interventions. Educational Researcher, 49(4), 241–253.

Krasnova, L. A., & Shurygin, V. Y. (2020). Blended learning of physics in the context of the professional development of teachers. International Journal of Technology Enhanced Learning, 12(1), 38–52.

Lastriningsih, L. (2017). Peningkatan berpikir kritis dan prestasi belajar melalui metode inquiry pada siswa kelas IV SD. Jurnal Prima Edukasia, 5(1), 68–78.

Listiawati, M., Hartati, S., Agustina, R. D., Putra, R. P., & Andhika, S. (2022). Analysis of the Use of LabXChange as a Virtual Laboratory Media to Improve Digital and Information Literacy for Biology Education Undergraduate Students. Scientiae Educatia: Jurnal Pendidikan Sains, 11(1).

Malik, A., Dirgantara, Y., Mulhayatiah, D., & Agustina, R. D. (2020). Analisis hakikat, peran, dan implikasi kegiatan laboratorium terhadap keterampilan abad 21. Conference or Workshop Item (Paper), 1–8.

Malik, A., Setiawan, A., Suhandi, A., Permanasari, A., Samsudin, A., Safitri, D., Lisdiani, S. A. S., Sapriadil, S., & Hermita, N. (2018). Using hot lab to increase pre-service physics teacher’s critical thinking skills related to the topic of RLC circuit. Journal of Physics: Conference Series, 1013(1).

Malik, A., & Ubaidillah, M. (2021). Multiple skill laboratory activities: How to improve students’ scientific communication and collaboration skills. Jurnal Pendidikan IPA Indonesia, 10(4), 585–595.

Miaturrohmah, M., & Fadly, W. (2020). Looking at a portrait of student argumentation skills on the concept of inheritance (21st century skills study). INSECTA: Integrative Science Education and Teaching Activity Journal, 1(1), 17–33.

Mishra, P., Singh, U., Pandey, C. M., Mishra, P., & Pandey, G. (2019). Application of student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 22(4), 407.

Nanto, D., Agustina, R. D., Ramadhanti, I., Putra, R. P., & Mulhayatiah, D. (2022). The usefulness of LabXChange virtual lab and PhyPhox real lab on pendulum student practicum during pandemic. Journal of Physics: Conference Series, 2157(1), 12047.

Noroozi, O., Dehghanzadeh, H., & Talaee, E. (2020). A systematic review on the impacts of game-based learning on argumentation skills. Entertainment Computing, 35, 100369.

Noroozi, O., Kirschner, P. A., Biemans, H. J. A., & Mulder, M. (2018). Promoting argumentation competence: Extending from first-to second-order scaffolding through adaptive fading. Educational Psychology Review, 30(1), 153–176.

Noviyanti, N. I., Mukti, W. R., Yuliskurniawati, I. D., Mahanal, S., & Zubaidah, S. (2019). Students’ scientific argumentation skills based on differences in academic ability. Journal of Physics: Conference Series, 1241(1), 12034.

Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196.

Perdana, R., Jumadi, J., & Rosana, D. (2019). Relationship between Analytical Thinking Skill and Scientific Argumentation Using PBL with Interactive CK 12 Simulation. International Journal on Social and Education Sciences, 1(1), 16–23.

Ping, I. L. L., Halim, L., & Osman, K. (2019). The effects of explicit scientific argumentation instruction through practical work on science process skills. Jurnal Penelitian Dan Pembelajaran IPA, 5(2), 112–131.

Ping, I. L. L., Halim, L., & Osman, K. (2020). Explicit Teaching of Scientific Argumentation as an Approach in Developing Argumentation Skills, Science Process Skills and Biology Understanding. Journal of Baltic Science Education, 19(2), 276–288.

Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327.

Pritasari, A. C., & Jumadi, J. (2018). Development of science learning tool based on problem based learning with Google Classroom to improve argumentation skill. Biosaintifika: Journal of Biology & Biology Education, 10(2), 348–355.

Priyadi, R., Mustajab, A., Tatsar, M. Z., & Kusairi, S. (2018). Analisis kemampuan berpikir kritis siswa SMA kelas X MIPA dalam pembelajaran fisika. JPFT (Jurnal Pendidikan Fisika Tadulako Online), 6(1), 53–55.

Purnama, R. P., Agustina, R. D., Pitriana, P., Andhika, S., Setia, M. D. D., & Nurfadillah, E. (2021). Developing HOT-LAB-Based Physics Practicum E-Module to improve Practicing critical thinking skills. Journal of Science Education Research, 5(2), 43–49.

Putra, R. P., Silvianti, N., Idris, S. F., & Nabilla, N. (2021). Uji Perbandingan Virtual Lab dengan Real Lab pada Hukum Archimedes. Radiasi : Jurnal Berkala Pendidikan Fisika, 14(1), 23–33.

Ramadoan, N., Suisworo, D., & Jauhari, I. (2019). Strategi Berpikir Hipotetikal Deduktif Dengan Phet Simulations Terhadap Keterampilan Berpikir Kritis Pada Pembelajaran Fisika Materi Usaha Dan Energi Kelas X Sma. Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 3, 206.

Ridwan, A., Rahmawati, Y., & Hadinugrahaningsih, T. (2017). STEAM integration in chemistry learning for developing 21st century skills. MIER Journal of Educational Studies Trends & Practices, 184–194.

Roviati, E., Widodo, A., Purwianingsih, W., & Riandi, R. (2017). Perceptions of prospective biology teachers on scientific argumentation in microbiology inquiry lab activities. Journal of Physics: Conference Series, 895(1), 12132.

Setya, W., Agustina, R. D., Putra, R. P., Prihatini, S., Hidayatulloh, R., Isnaeni, P. S., & Malik, A. (2021). Implementation of higher order thinking laboratory (HOTLAB) on magnetic field with real blended virtual laboratory to improve students critical thinking skills. Journal of Physics: Conference Series, 2098(1), 12019.

Suhandi, A. (2012). Pengembangan perangkat pembelajaran fisika sekolah untuk meningkatkan pemahaman konsep dan kemampuan berargumentasi calon guru fisika. Jurnal Pendidikan Fisika Indonesia, 8(2).

Tikhonova, E., Kudinova, N., & Golubovskaya, E. (2015). Sophisticated thinking: text, task, and situation. INTED2015 Proceedings, 5461–5470.

Tikhonova, E., & Kudinova, N. (2015a). Sophisticated thinking: higher order thinking skills. Journal of Language and Education, 1(3), 12–23.

Tikhonova, Elena, & Kudinova, N. (2015b). Sophisticated thinking: Lower order thinking skills. Proceedings of the 2nd International Multidisciplinary Scientific Conferences on Social Sciences and Arts, 2, 352–360.

Tobing, H. E. L., Somakim, S., & Susanti, E. (2022). Development of E-Module-Based on HOTS Questions on Distance Material for High School Students. Jurnal Pendidikan Matematika, 16(1), 1–16.

Uzuntiryaki-Kondakci, E., Tuysuz, M., Sarici, E., Soysal, C., & Kilinc, S. (2021). The role of the argumentation-based laboratory on the development of pre-service chemistry teachers’ argumentation skills. International Journal of Science Education, 43(1), 30–55.

Vergara, D., Fernández-Arias, P., Extremera, J., Dávila, L. P., & Rubio, M. P. (2022). Educational trends post COVID-19 in engineering: Virtual laboratories. Materials Today: Proceedings, 49, 155–160.

Vlab.amrita.edu. (2013). Spectrometer- Determination of Cauchy’s constants. vlab.amrita.edu/index.php?sub=1&brch=281∼=15

Walker, J. P., & Sampson, V. (2013). Learning to argue and arguing to learn: Argument‐driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research in Science Teaching, 50(5), 561–596.

Wang, J., Guo, D., & Jou, M. (2015). A study on the effects of model-based inquiry pedagogy on students’ inquiry skills in a virtual physics lab. Computers in Human Behavior, 49, 658–669.

Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. Frontiers in Psychology, 10, 3087.

Refbacks

  • There are currently no refbacks.