Characteristics of Concrete With Rice Husk Ash Local Kutai Kartanegara

syahrul syahrul(1),


(1) Universitas 17 Agustus 1945 Samarinda

Abstract

Abstract. Concrete material made from natural waste was developed to balance the use of concrete materials resulting from natural exploration with an impact on environmental damage, rice husk is a waste material from rice mills and contains reactive silica and has the benefit of reducing energy consumption in cement production. Laboratory test method in the form of testing the compressive characteristics used standard cube concrete 150 mm x 150 mm x 150 mm with a total sample of 24 samples. The effect of concrete strength on the amount of cement replacement is 0%; 5%; 10% ; and 15% which could be compared with concrete without using husk ash. The compressive strength obtained in terms of the age of the concrete is 28 days. The mechanical properties of husk ash at the age of 28 days gave optimal compressive strength results with the addition of 5% husk ash.

Keywords

Concrete; Rice Husk Ash;Characteristics; Compressive Strength

Full Text:

PDF

References

Badan Pusat Statistik. Kutai Kartanegara Dalam Angka 2022. ISSN: 2746-2854, No Publikasi: 64030.2001, CV. Mahendra Jaya, (2022).

Adnan Z. S., Ariffin N. F., Mohsin S. M. S., and Lim N. H. A. S. Review Paper: Performance of Rice Husk Ash as a Material for Partial Cement Replacement in Concrete. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.02.400.

Shaaban M. Properties of Concrete with Binary Binder System of Calcined Dolomite Powder and Rice Husk Ash. Heliyon 7 (2021) e06311, https://doi.org/10.1016/j.heliyon.2021.e06311.

Tayeh B. A., Alyousef R., Alabduljabbar H., and Alaskar A. Recycling of Rice Husk Waste for a Sustainable Concrete: A Critical Review. Journal of Cleaner Production 312 (2021) 127734, https://doi.org/10.1016/j.jclepro.2021.127734.

Kwan W. H., and Wong Y. S. Acid Leached Rice Husk Ash (RHA) in Concrete: A Review. Materials Science For Energy Technologies 3 (2020) 501-507, https://doi.org/10.1016/j.mset.2020.05.001.

Kishore R., Bhikshma V., and Prakash P. J. Study of Strength Characteristics of High Strength Rice Husk Ash Concrete. Procedia Engineering 14 (2011) 2666-2672, https://doi.org/10.1016/j.proeng.2011.07.335.

Masanja D. N., Muya M. S., and Nyangi P. Characteristics of Combined Rice and Wheat Husk Ashes as a Partial Replecement for Cement in Mortar. Civil Engineering Journal, e-ISSN: 2476-3055, Vol 8, No 04, April, (2022), http://dx.doi.org/10.28991/CEJ-2022-08-04-04.

Rumman R., Bari M. S., Manzur T., Kamal M. R., and Noor M. A. A Durable Concrete Mix Design Approach Using Combined Aggregate Gradation Bands and Rice Huask Ash Based Blanded Cement. Journal of Building Engineering, 30 (2020) 101303, https://doi.org/10.1016/j.jobe.2020.101303.

Singh A., Kumar R., Metha P. K., and Tripathi D. Effect of Nitric Acid on Rice Husk Ash Steel Fiber Reinforced Concrete. Materials Today: Proceedings 27 (2020) 995-1000, https://doi.org/10.1016/j.matpr.2020.01.310.

Aslam F., Elkotb M. A., Iqtidar A., Khan M. A., Javed M. F., Usanova K. I., Khan M. I., Alamri S., Musarat M. A. Compressive Strength Prediction of Rice Husk Ash Using Multiphysics Genetic Expression Programming. Ain Shams Engineering Journal 13 (2022) 101593, https://doi.org/10.1016/j.asej.2021.09.020.

Al-Alwan A. A. K., Al-Bazoon M., Mussa F. I., Alalwan H. A., Shadhar M. H., Mohammed M. M., and Mohammed M. F. The Impact of Using Rice Husk Ash as a Replacement Material in Concrete: An Experimental Study. Journal of King Saud University-Engineerung Sciences, https://doi.org/10.1016/jjkseus.2022.03.002.

Vieira A. P., Filho R. D. T., Tavares L. M., and Cordeiro G. C. Effect of Particle Size, Porous Struture and Content of Rice Husk Ash on hte Hydration Process and Compressive Strength Evolution of Concrete. Construction and Building Materials 236 (2020) 117553, https://doi.org/10.1016/j.conbuildmat.2019.117553.

Nana A., Epey N., Rodrique K. C., Deutou J. G. N., Djobo J. N. Y., Tome S., Alomayri T. S., Ngoune N. Mechanical Strength and Microstructure of Metakaolin/Volcanic Ash-Based Geopolymer Composites Reinforced with Reactive Silica from Rice Husk Ash. Materialia 19 (2021) 101083, https://doi.org/101.1016/j.mtla.2021.101083.

Chetan D., and Aravindan A. An Experimental Investigation on Strength Characteristics by Partial Replacement of Rice Husk Ash and Robo Sand in Concrete. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.05.075.

Ashraf W. B., and Noor M. A. Performance-Evaluation of Concrete Properties for Different Combined Aggregate Gradation Approaches. Procedia Engineering 14 (2011) 2627-2634, https://doi.org/10.1016/j.proeng.2011.07.330.

Sabih G., Tarefder R. A., and Jamil S. M. Optimization of Gradation and Fine Modulus of Naturally Fine Sands for Improved Performance as Fine Aggregate in Concrete. Procedia Engineering 145 (2016) 66-73, https://doi.org/10.1016/j.proeng.2016.04.016.

Fladvad M., and Onnela T. Influence of Jaw Crusher Parameters on the Quality of Primary Crushed Aggregates. Minerals Engineering 151 (2020) 106338, https://doi.org/10.1016/j.mineng.2020.106338.

Yan W., Cui W., and Qi L. Effect of Aggregate Gradation and Mortar Rheology on Static Segregation of Self-Compaction Concrete. Construction and Building Materials 259 (2020) 119816, https://doi.org/10.1016/j.conbuildmat.2020.119816.

Anand S. S., Nirmala R., Kumar D. A., Srikanth V., and Kumar M. S. An Eksperimental and Numerical Investigation on Flexural Characteristics of Wire Mesh Reinforced Concrete Beam Blended with Rice Husk Ash (RHA). Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.11.298.

Tulashie S. K., Ebo P., Ansah J. K., Mensah D., Production of Potrland Pozzolana Cement from Rise Husk Ash. Materialia 16 (2021) 101048, https://doi.org/10.1016/j.mtla.2021.101048.

Mynarcik P. Core Sampling for Fiber Concrete Construction-Context Between Quantity of Core Samples and Evaluation of Fiber Concrete Characteristics. Procedia Engineering 114 (2015) 493-499, https://doi.org/10.1016/j.proeng.2015.08.097.

Vu C. C., Ho N. K., and Pham T. A. Weibull Statistical Analysis and Experimental Investigation of Size Effects on the Compressive Strength of Concrete Building Materials. Case Studies in Construction Materials 17 (2022) e01231, https://doi.org/10.1016/j.cscm.2022.e01231.

Al-Jamimi H. A., Al-kutti W. A., Alwahaishi S., and Alotaibi K. S. Prediction of Compressive Strength in Plain and Blended Cement Concrete Using a Hybrid Artificial Intelligence Model. Case Studies in Construction Materials 17 (2022) e01238, https://doi.org/10.1016/j.cscm.2022.e01238.

Lu J. X., Shen P., Ali H. A., and Poon C. S. Mix Design and Performance of Lightweight Ultra High-Performance Concrete. Materials & Design 216 (2022) 110553, https://doi.org/10.1016/j.matdes.2022.110553.

Wangler T., Peleggi R., Gurel S., and Flatt R. J. A Chemical Process Engineering Look at Digital Concrete Processes: Critical Step Design, Inline Mixing, and Scaleup. Cement and Concrete Research 155 (2022) 106782, https://doi.org/10.1016/j.cemconcres.2022.106782.

Mohe N. S., Shewalul Y. W., and Agon E. C. Experimental Investigation on Mechanical Properties of Concrete Using Different Sources of Water for Mixing and Curing Concrete. Case Studies in Construction Materials 16 (2022) e00959, https://doi.org/10.1016/j.cscm.2022.e00959.

Syahrul., Tjaronge M. W., Djamaluddin R., Amiruddin. A. A. Flexural Behavior of Normal and Lightweight Concrete Composite Beam. Civil Engineering Journal, e-ISSN: 2476-3055, Vol 7, No 03, March, (2021), http://dx.doi.org/10.28991/cej-2021-03091673.

Cuesta V. R., Evangelista L., Brito J. D., Skaf M., Manso J. M. Shringkage Prediction of Recycled Aggregate Structural Concrete With Alternative Binder Through Partial Correction Coefficients. Cement and Concrete Composite 129 (2022) 104506, https://doi.org/10.1016/j.cemconcomp.2022.104506.

Sahoo A. K., and Kar B. B. Water Absorptivity and its Impact on Various Properties of the Concrete Materials. Materials Today: Proceeding, https://doi.org/10.1016/j.matpr.2021.01.474.

Nwaubani S. O., Parsons L. A. Properties, Durability and Microstructure of Concrete Incorporating Waste Electrical and Electronic Plastics as Partial Replacement for Aggregates in Concrete. Case Studies in Construction Materials 15 (2021) e00731, https://doi.org/10.106/j.cscm.2021.e00731.

Park S., Moges K. A., Wu S., Pyo S. Characteristics of Hybrid Alkaline Cement Composite with High Cement Content: Flash Set and High Compressive Strength. Journal of Materials Research and Technology 2022 ; 17 : 1582 1597.

Joshua O., Olusola K. O., Ndaku D. O., Ede A. N., Olofinnade O. M., and Job O. F. Modified Mix Design Development Specification Batched by Volume from Specified Mix Design by Weight Towards Improved Concrete Production. Methodsx 7 (2020) 100817, https://doi.org/10.1016/j.mex.2020.100817.

Panda K. C., Behera S., and Jena S. Effect of Rice Husk Ash on Mechanical Properties of Concrete Containing Crushed Seashell as Fine Aggregate. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.04.049.

Fernandes F. A. D. S., Arcaro S., Junior E. F. T., Serra J. C. V., and Bergmann C. P. Glass Foams Produced from Soda-Lime Glass Waste and Rice Husk Ash Applied as Partial Subtitutes for Concrete Aggregates. Process Safety and Environmental Protection 128 (2019) 74-84, https://doi.org/10.1016/j.psep.2019.05.044.

Zhu L., Zhao C., and Dai J. Prediction of Compressive Strength of Recycled Aggregate Concrete Based on Gray Correlation Analysis. Construction and Building Materials 273 (2021) 121750, https://doi.org/10.106/j.conbuildmat.2020.121750.

Azees M. O., Ahmad S., Al-dulaijan S. U., Maslehuddin M., Naqvi A. A. Radiation Shielding Performance of Heavy-Weight Concrete Mixtures. Construction and Building Materials 224 (2019) 284-291, https://doi.org/10.1016/j.conbuildmat.2019.07.077.

Refbacks

  • There are currently no refbacks.