GERUSAN LOKAL DI KAKI STRUKTUR IMPERMEABLE BERDINDING MIRING
(1) Jurusan Teknik Sipil, Politeknik Universitas Andalas
(2) 
Abstract
Toe scour was one of phenomenon that frequently experienced by coastal structures and realized as the causative factor to structure failure. When a coastal structure was placed at coastal environment, existence of that structure would rapidly affect to the flow pattern around its area, one of them was breaking wave position. When breaking wave happened, energy dissipation caused by breaking process would be compensated in the form of vortex and improvement of flow intensity that have ability to move bed material from its original rest position around the toe.This research was focused on the breaking wave condition that produce local scouring at toe of impermeable sloping wall structure. Testing variable consists of wave height (H ), wave period (T) , water depth at toe (ds), beach slope (tan b), and angle of structure (a). Physical Modeling was conducted at wave flume with 40 m length, 0.6 m width and 1.1 m height in Balai Hidraulika and Geoteknik Keairan (BHGK) PUSAIR, Bandung. Riset result shows that improvement of toe scour was affected by breaking wave characteristics and their interaction with the structure. Improvement of depth of scour was in relation with water depth at toe, height of wave breaking, surf similarity parameter, bed agitation caused by breaking process, and downrush flow velocity.
Gerusan kaki merupakan fenomena yang sering dialami oleh struktur-struktur bangunan pantai dan disadari sebagai faktor penyebab kegagalan struktur. Saat struktur ditempatkan di lingkungan pantai, keberadaan struktur tersebut akan segera mempengaruhi pola aliran disekitarnya, salah satunya adalah posisi gelombang pecah. Saat terjadi gelombang pecah, disipasi energi akibat proses pecahnya gelombang akan terkompensasi dalam bentuk vortex dan peningkatan intensitas aliran yang memiliki kemampuan untuk memindahkan material dasar dari posisi awalnya di kaki struktur. Penelitian ini difokuskan pada kondisi gelombang pecah yang menghasilkan gerusan local di kaki pada struktur impermeable berdinding miring. Variabel pengujian terdiri atas tinggi gelombang (H), periode gelombang (T), kedalaman air di kaki struktur (ds), kemiringan pantai (tan b), dan sudut kemiringan struktur (a). Pemodelan fisik dilakukan pada saluran gelombang dengan panjang 40 m, lebar 0,6 m dan tinggi 1,1 m di Balai Hidraulika dan Geoteknik Keairan (BHGK) PUSAIR, Bandung. Hasil penelitian memperlihatkan terjadinya peningkatan gerusan kaki sebagai akibat dari karakter gelombang pecah dan interaksinya terhadap struktur. Peningkatan kedalaman gerusan sebagai hubungan dari kedalaman air di kaki struktur, tinggi gelombang pecah, parameter surf similarity, gangguan terhadap dasar di kaki struktur akibat proses pecah gelombang, dan kecepatan aliran downrush.
Keywords
Full Text:
PDFReferences
Coastal Engineering Manual. 2006. Scour and Scour Protection. Chapter VI-5-6, EM 1110-2-1100. Headquarters: U.S. Army Corps of Engineers.
Shore Protection Manual. 1984. Washington DC: CERC, WES, US Army Corps of Engineers.
Breusers, H.N.C dan Raudkivi, A.J. 1991. Scouring. IAHR Hydraulics Structures Design Manual 2. Rotterdam: Balkema.
Dean, R. G. dan Dalrymple, R. A. 1991. Water Wave Mechanics for Engineers and Scientists. Singapore: World Scientific.
Fowler, J.E. 1992. Scour Problems and Methods for Prediction of Maximum Scour at Vertical Seawalls. Technical Report CERC-92-16. Vicksburg: CERC, WES, US Army Corps of Engineers.
Fredsøe, J. dan Deigaard, R. 1992. Mechanics of Coastal Sediment Transport. Singa-pore: World Scientific.
Fredsøe, J. dan Sumer, B.M. 1997. Scour at the Round Head of a Rubblemound Breakwater. Coastal Engineering Vol. 29. Hal: 231–262.
Galvin, C. J. 1968. Breaker Type Classification on Three Laboratory Beaches. Journal of Geophysical Research. Hal: 3651-3659. Vol. 73. Washington D.C: AGU.
Goda, Y. 1975. Irregular Wave Deformation in the Surf zone. Coastal Eng. in Japan. Vol. 18. Hal: 13–26. Tokyo: JSCE.
Goda, Y. 1980. A Review on Statistical Inter-pretation of Wave Data. Report of Port and Harbour Research Institute Vol. 16. No.2. Hal: 3–26.
Hamada, T. 1951. Breakers and Beach Erosion. Report of Transportation Tech. Res. Inst., Ministry of Transportation. Japan. No.1.
Herbich, J.B. dan Ko, S.C. 1968. Scour of Sand Beaches in Front of Seawalls. Proc. of the 11th on Coastal Engineering. Hal: 622–643. London: CERC of ASCE.
Horikawa, K. 1988. Nearshore Dynamics and Coastal Processes, Theory, Measure-ment, and Predictive Models. Tokyo: Univ. of Tokyo Press.
Izumiya, T., dan Horikawa K., 1983. Wave energy equation applicable in and outside the surf zone. Coastal Eng. In Japan. Hal: 119–137. Vol. 27. Tokyo: JSCE.
Jones, D.F. 1975. The Effect of Vertical Seawalls on Longshore Currents. Ph.D Thesis. Univ. of Florida.
McDougal, W.G., Kraus, N. and Ajiwibowo, H. 1996. The effects of seawalls on the beach: Part 2, Numerical Modeling of SUPERTANK Seawall Tests. J. Coastal Research, Vol. 12. No.3. Hal: 702–713. West Palm Beach: Coastal Education and Research Foundation (CERF).
Miche, R. 1951. in Shore Protection Manual. 1984. Washington DC: US Army Corps of Engineers..
Muller, G. 2007. Flow fields in Reflected Waves at a Sloped Seawall. Ocean Engineering 34. Hal: 1786–1789. Piscataway: IEEE Service Center.
Ostendorf, D. W. dan O. S. Madsen. 1979. An Analysis of Longshore Currents And Associated Sediment Transport in the Surf Zone. Hal: 79–13. Massachusetts: MIT Rep. Sea Grant.
Powell, K.A. dan Lowe, J.P. 1994. The Scouring of Sediments at the Toe of Seawalls. Proc. Hornafjordor Int. Coastal Symposium. 20-24 June 1994. Iceland: G. Viggosson.
Sato, S., Tanaka, N., dan Irie, I. 1968. Study on Scouring at the Foot of Coastal Structures. Proc. of the 11th on Coastal Engineering. Vol. I. Hal. 579–598. London: CERC of ASCE.
Shibayama, T., Higuchi, A., dan Horikawa, K.1986. Sediment Transport Due to Breaking Waves, Proc. of 20th ICCE. Hal: 1509–1522. Taipei: ASCE.
Song, Won Oh, dan Schiller, R. E. 1973. Experimental Studies of Beach Scour. C.O.E. Report No. 166 (June). Texas: Texas A&M Sea Grant College.
Sumer, B.M. dan Fredsøe, J. 2000. Experimental Study of Two-Dimensional Scour and Its Protection at a Rubble-mound Breakwater. Coastal Engineering 40 (1), Hal: 59–87.
Sumer, B.M., Jorgen Fredsøe, Alberto Lamberti, Barbara Zanuttigh, Martin Dixen, Kjartan Gislason, dan Antonio F. Di Penta. 2005. Local scour at roundhead and along the trunk of low crested structures. Hal: 995–1025. Coastal Engineering Vol. 52.
Sumer, B.M. dan Fredsøe, J. 2002. The Mechanics of Scour in The Marine Environment. Singapore: World Scientific.
Sunamura, T. 1983. Determination of Breaker Height and Depth in the Field. Ann Rep. Inst. Geoscience. No. 8. Hal: 53–54. Tsukuba: Univ. Tsukuba.
Sutherland, J., Obhrai, C., Whitehouse, R. J. S., dan Pearce, A. M. C. 2006. Laboratory Tests of Scour at a Seawall. Proc. 3rd International Conference on Scour and Erosion (in CD-ROM), Amsterdam: ISSMGE.
Tsai, C.P., Jiann-Shyang, dan Lin, C. 1998. Downrush Flow rom Waves on Sloping Seawalls. Ocean Engineering Vol. 25, No.4-5. Hal: 295–308. Piscataway, New Jerse: IEEE Service Center.
van Rijn, L.C. 1993. Principles of Sediment Transport in Rivers, Estuaries, and Coastal Seas. Amsterdam: Aqua Publications.
Xie, S.L. 1981. Scouring Patterns in Front of Vertical Breakwaters and Their Influence on The Stability of The Foundations of The Breakwaters. Report on September. Dep. of Civil Engineering, Netherlands: Delft Univ. of Technology.
Refbacks
- There are currently no refbacks.