Spatial Distribution of Drug-Resistant Tuberculosisin Makassar City, South Sulawesi Province, Indonesia

Andi Alfian Zainuddin(1), Andang Suryana Soma(2), Muhammad Firdaus Kasim(3), Sri Ramadany(4), Irawati Djaharuddin(5),


(1) Hasanuddin University
(2) Hasanuddin University
(3) Hasanuddin University
(4) Hasanuddin University
(5) Hasanuddin University

Abstract

This study aims to determine the domicile distribution, find out the high-risk areas, and determine the risk of drug-resistant tuberculosis patients based on patient location in 15 districts of Makassar City from Tuberculosis register data of South Sulawesi Provincial Health Office in December 2017 – April 2019 period. Gen Xpert rapid or drug sensitivity examinations were used to define drug-resistant tuberculosis. The domicile location of patients was geocoded by maps in Google Earth and aggregated per area by using Kernel Density analysis using ArcView GIS 10.3 software. We found that drug-resistant tuberculosis cases tended to be clustered in the western part of Makassar City, an area with a fairly high population density. There were areas with the highest concentration of predicted cases as a high risk of transmission of drug-resistant TB, around the Bontoala District, Makassar District, and Mamajang District. Healthcare facilities located in hot spots area need to be equipped with molecular rapid test facilities and conduct drug sensitivity tests for all suspected tuberculosis patients. Further research needs to be carried out to determine the distribution of tuberculosis patients who are sensitive and resistant to drugs.

Keywords

tuberculosis; drug-resistant; spatial distribution

Full Text:

PDF

References

Alene, K.A., Viney, K., McBryde, E.S., & Clements, A.C., 2017. Spatial Patterns of Multidrug Resistant Tuberculosis and Relationships to Socio-economic, Demographic and Household Factors in Northwest Ethiopia. PLoS One, 12(2), e0171800.

Banerjee, S., 2016. Spatial Data Analysis. Annual Review of Public Health, 37(1), pp.47-60.

Dowdy, D.W., Grant, A.D., Dheda, K., Nardell, E., Fielding, K., & Moore, D.A.J., 2017. Designing and Evaluating Interventions to Halt the Transmission of Tuberculosis. J Infect Dis, 216(6), pp.S654-s661.

Jenkins, H.E., Plesca, V., Ciobanu, A., Crudu, V., Galusca, I., Soltan, V., Serbulenco, A., Zignol, M., Dadu, A., Dara, M., & Cohen, T., 2013. Assessing Spatial Heterogeneity of Multidrug-resistant Tuberculosis in a High-burden Country. Eur Respir J, 42(5), pp.1291-1301.

Kemenkes., 2013. National Guidelines for Medical Service on Tuberculosis Management. Ministry of Health Indonesia. Jakarta

Kendall, E.A., Fofana, M.O., & Dowdy, D.W., 2015. Burden of Transmitted Multidrug Resistance in Epidemics of Tuberculosis: A Transmission Modelling Analysis. Lancet Respir Med, 3(12), pp.963-972.

Kompala, T., Shenoi, S.V., & Friedland, G., 2013. Transmission of Tuberculosis in Resource-Limited Settings. Curr HIV/AIDS Rep, 10(3), pp.264-272.

Lima, I.B., Nogueira, L.M.V., Guimarães, R., Rodrigues, I.L.A., André, S.R., Abreu, P.D., & Corrêa, P.K.V., 2020. Spatial Patterns of Multidrug-resistant Tuberculosis: Correlation with Sociodemographic Variables and Type of Notification. Rev Bras Enferm, 73(suppl 5), pp.e20190845.

Lin, H.H., Shin, S.S., Contreras, C., Asencios, L., Paciorek, C.J., & Cohen, T., 2012. Use of Spatial Information to Predict Multidrug Resistance in Tuberculosis Patients, Peru. Emerg Infect Dis, 18(5), pp.811-813.

Mao, Q., Zeng, C., Zheng, D., & Yang, Y., 2019. Analysis on Spatial-temporal Distribution Characteristics of Smear Positive Pulmonary Tuberculosis in China, 2004-2015. Int J Infect Dis, 80s, pp.S36-s44.

Maung, H.M.W., Palittapongarnpim, P., Aung, H.L., Surachat, K., Nyunt, W.W., & Chongsuvivatwong, V., 2020. Geno-Spatial Distribution of Mycobacterium Tuberculosis and Drug Resistance Profiles in Myanmar-Thai Border Area. Trop Med Infect Dis, 5(4).

Nugrahaeni, D.K., 2015. Analisis Penyebab Resistensi Obat Anti Tuberkulosis. Kemas, 11(1), pp.8.

Oliveira, O., Ribeiro, A.I., Duarte, R., Correia-Neves, M., & Rito, T., 2022. Intra-urban Variation in Tuberculosis and Community Socioeconomic Deprivation in Lisbon Metropolitan Area: A Bayesian Approach. Infect Dis Poverty, 11(1), pp.24.

Oliveira, O., Ribeiro, A.I., Krainski, E.T., Rito, T., Duarte, R., & Correia-Neves, M., 2020. Using Bayesian Spatial Models to Map and to Identify Geographical Hotspots of Multidrug-Resistant Tuberculosis in Portugal between 2000 and 2016. Sci Rep, 10(1), pp.16646.

SR, D.S., Nurlaela, S., & A, I.Z., 2012. Faktor Risiko Multidrug Resistant Tuberculosis (MDR-TB). Kemas, 8(1), pp.7.

Sutanto, Y.S., Sutanto, M.S., & Harti, A.S., 2021. Anti-Tuberculosis Drugs against the Resistance Level of Mycobacterium tuberculosis Isolates Kemas, 2021, 17(1), 10.

WHO., 2019a. Indonesia Tuberculosis Profile 2019.

WHO. 2019b. World Health Organization: Global Tuberculosis Report 2019.

Yuen, C.M., Amanullah, F., Dharmadhikari, A., Nardell, E.A., Seddon, J.A., Vasilyeva, I., Zhao, Y., Keshavjee, S., & Becerra, M.C., 2015. Turning Off the Tap: Stopping Tuberculosis Transmission Through Active Case-finding and Prompt Effective Treatment. Lancet, 386(10010), pp.2334-2343.

Zaragoza-Bastida, A., Hernández-Tellez, M., Bustamante-Montes, L.P., Medina-Torres, I., Jaramillo-Paniagua, J.N., Mendoza-Martínez, G.D., & Ramírez-Durán, N., 2012. Spatial and Temporal Distribution of Tuberculosis in the State of Mexico, Mexico. ScientificWorld Journal, 2012, pp.570278.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.