Fogging Effectiveness Based on Time and Location of DHF Cases (Study in Sleman Regency)
(1) Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta
(2) Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta
(3) Faculty of Agriculture, Universitas Bengkulu
(4) Center for Disaster Studies, Universitas Gadjah Mada
(5) Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
Abstract
Dengue fever is a viral infection transmitted through the bite of the Aedes mosquito. Dengue fever is a public health problem worldwide, including in Indonesia. The increase in dengue cases is closely related to the presence of mosquito vectors. The prevention of dengue outbreaks is by fogging focus. Until now, there is no method to evaluate the effectiveness of focal fogging, yet many suspect that fogging focus is less effective because the incidence of DHF tends to increase over several decades. The study aims to find a method to evaluate the effectiveness of fogging with a spatial-temporal approach. It is an observational study using data on the incidence of DHF along with the date of illness, coordinates of DHF patients, and the date of fogging obtained from the District Health Office. Data processing is by ArcMap 10.5. Determination of the time limit and extent of protective fogging is based on the provision that if in the buffer area within a radius of 200 meters, there is more than one case of DHF on days 4-21 after the patient has a fever, then fogging is declared ineffective. There were 1,070 cases of DHF in 2008-2013 in Sleman Regency. 773 (72.24%) cases were fogged, while 290 were not. Of the 773 fogged cases, 59 (7.63%) were within the time and place of fogging protection. It means that the effectiveness of fogging in Sleman Regency reached 92.37%. Overall, there were 59 of 1,070 (5.5%) DHF cases came from ineffective fogging. By spatio-temporal approach, the fogging focus has been quite successful in suppressing the incidence of DHF in the Sleman Regency. In the future, it is necessary to consider fogging is focused other than in the patient’s house and surroundings.
Keywords
Full Text:
PDFReferences
Adeyinka, A., Muco, E., & Pierre, L., 2022. Organophosphates. StatPearls Publishng.
Ahmed, A.M., Mohammed, A.T., Vu, T.T., Khattab, M., Doheim, M.F., Ashraf-Mohamed, A., Abdelhamed, M.M., Shamandy, B.E., Dawod, M.T., Alesaei, W.A., Kassem, M.A., Mattar, O.M., Smith, C., Hirayama, K., & Huy, N.T., 2020. Prevalence and Burden of Dengue Infection in Europe: A Systematic Review and Meta‐Analysis. Reviews in Medical Virology, 30(2).
Archiarafa, Z.S., Santoso, L., & Martini., 2016. Menilai Efektivitas Fogging Fokus Menggunakan Thermal Fog dan Ultra Low Volume (ULV) dengan Insektisida Malathion dalam Pengendalian Vektor Demam Berdarah (Studi di Wilayah Kerja Puskesmas Tlogosari Wetan Kota Semarang. Jurnal Kesehatan Masyarakat, 2016, pp.226–233.
Bowman, L.R., Donegan, S., & McCall, P.J., 2016. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis. PLOS Neglected Tropical Diseases, 10(3), pp.e0004551.
Dafalla, O., Alsheikh, A., Mohammed, W., Shrwani, K., Alsheikh, F., Hobani Y., & Noureldin, E., 2019. Knockdown Resistance Mutations Contributing to Pyrethroid Resistance in Aedes aegypti Population, Saudi Arabia. EMHJ, 25(12), pp.905-913.
Demok, S., Endersby-Harshman, N., Vinit, R., Timinao, L., Robinson, L.J., Susapu, M., Makita, L., Laman, M., Hoffmann, A., & Karl, S., 2019. Insecticide Resistance Status of Aedes aegypti and Aedes albopictus Mosquitoes in Papua New Guinea. Parasites & Vectors, 12(1), pp.333.
Dev, V., Khound, K., & Tewari, G.G., 2014. Dengue Vectors in Urban and Suburban Assam, India: Entomological Observations. WHO South-East Asia Journal of Public Health, 3(1), pp.51–59.
Gan, S.J., Leong, Y.Q., bin-Barhanuddin, M.F.H., Wong, S.T., Wong, S.F., Mak, J.W., & Ahmad, R.B., 2021. Dengue Fever and Insecticide Resistance in Aedes Mosquitoes in Southeast Asia: A Review. Parasites & Vectors, 14(1), pp.315.
Gossner, C.M., Fournet, N., Frank, C., Fernández-Martínez, B., del-Manso, M., Gomes Dias, J., & de-Valk, H., 2022. Dengue Virus Infections among European Travellers, 2015 to 2019. Euro Surveillance : Bulletin Europeen Sur Les Maladies Transmissibles-European Communicable Disease Bulletin, 27(2).
Hamid, P.H., Ninditya, V.I., Prastowo, J., Haryanto, A., Taubert, A., & Hermosilla, C., 2018. Current Status of Aedes aegypti Insecticide Resistance Development from Banjarmasin, Kalimantan, Indonesia. BioMed Research International, 2018, pp.1–7.
Harapan, H., Michie, A., Mudatsir, M., Sasmono, R.T., & Imrie, A., 2019. Epidemiology of Dengue Hemorrhagic Fever in Indonesia: Analysis of Five Decades Data from the National Disease Surveillance. BMC Research Notes, 12(1), pp.350.
Harrington, L.C., Fleisher, A., Ruiz-Moreno, D., Vermeylen, F., Wa, C.V., Poulson, R.L., Edman, J.D., Clark, J.M., Jones, J.W., Kitthawee, S., & Scott, T.W., 2014. Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand. PLoS Neglected Tropical Diseases, 8(8), pp.e3048.
Ibrahim, E., Hadju, V., Nurdin, A., & Ishak, H., 2016. Effectiveness of Abatezation and Fogging Intervention to the Larva Density of Aedes Aegypti Dengue in Endemic Areas of Makassar City. International Journal of Sciences: Basic and Applied Research, 3(3), pp.255–264.
Khan, S., Uddin, M., Rizwan, M., Khan, W., Farooq, M., Sattar Shah, A., Subhan, F., Aziz, F., Rahman, K., Khan, A., Ali, S., & Muhammad, M., 2020. Mechanism of Insecticide Resistance in Insects/Pests. Polish Journal of Environmental Studies, 29(3), pp.2023–2030.
Masyeni, S., Yohan, B., Somia, I.K.A., Myint, K.S.A., & Sasmono, R.T., 2018. Dengue Infection in International Travellers Visiting Bali, Indonesia. Journal of Travel Medicine, 25(1).
Mulyaningsih, B., Umniyati, S.R., Satoto, T.B.T., Diptyanusa, A., Agung, D.A., & Nugrahaningsih, S.Y., 2018. Insecticide Resistance and Posible Mechanisms of Aedes aegypti (Diptera: Culicidae) in Yogyakarta. J. Med Sci, 50 (1), pp.24-32.
Nansen, C., & Thomas, J., 2013. The Performance of Insecticides – A Critical Review. Insecticides - Development of Safer and More Effective Technologies. InTech.
Perdomo, D., Bhargava, S., Toh, K.B., & Hladish, T.J., 2020. The Role of Workplace Distribution in Dengue Transmission. Conference: University of Florida Undergraduate Research Conference Spring 2020.
Ratanawong, P., Kittayapong, P., Olanratmanee, P., Wilder-Smith, A., Byass, P., Tozan, Y., Dambach, P., Quiñonez, C.A.M., & Louis, V.R., 2016. Spatial Variations in Dengue Transmission in Schools in Thailand. Plos One, 11(9), pp.e0161895.
Riar, N.K., 2014. Bifenthrin. Encyclopedia of Toxicology, pp.449–451. Elsevier.
Rund, S.S C., Labb, L.F., Benefiel, O.M., & Duffield, G.E., 2020. Artificial Light at Night Increases Aedes aegypti Mosquito Biting Behavior with Implications for Arboviral Disease Transmission. The American Journal of Tropical Medicine and Hygiene, 103(6), pp.2450–2452.
Silberman, J., & Taylor, A., 2022. Carbamate Toxicity.
Sipin, E., Domn, N.C., Salim, H., Abdullah, S., 2021. Relationship Between Frequency of Fogging and Dengue Cases in Sandakan, Sabah in 2011 to 2018. Mal J Med Health Sci, 17(Supp.3), pp.9-13.
Stephenson, C., Coker, E., Wisely, S., Liang, S., Dinglasan, R.R., & Lednicky, J.A., 2022. Imported Dengue Case Numbers and Local Climatic Patterns Are Associated with Dengue Virus Transmission in Florida, USA. Insects, 13(2), pp.163.
Suárez, C.M.H., & Cano, O.M., 2016. Empirical Evidence of the Effect of School Gathering on the Dynamics of Dengue Epidemics. Global Health Action, 9(1), pp.1-7.
Sudo, M., Takahashi, D., Andow, D.A., Suzuki, Y., & Yamanaka, T., 2018. Optimal Management Strategy of Insecticide Resistance Under Various Insect Life Histories: Heterogeneous Timing of Selection and Interpatch Dispersal. Evolutionary Applications, 11(2), pp.271–283.
Supartha, I., 2008. Pengendalian Terpadu Vektor Virus Demam Berdarah Dengue, Aedes aegypti (Lin.) dan Aedes albopictus (Skuse) (Diptera: Culicidae). Prosiding Dies Natalis Universitas Udayana.
Tan, C.H., & Lee, S.N., 2022. The Impact of International Tourist Arrivals on Economic Growth Under Dengue Fever Risk in Malaysia. Journal of Economics and Sustainability, 4(2), pp.27-39.
Tran, B.-L., Tseng, W.-C., Chen, C.-C., & Liao, S.-Y., 2020. Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan. International Journal of Environmental Research and Public Health, 17(4), pp.1392.
Usuga, A.F, Zuluaga-Idárraga, L.M., Alvarez, N., Rojo, R., Henao, E., & Rúa-Uribe, G.L., 2019. Barriers that Limit the Implementation of Thermal Fogging for the Control of Dengue in Colombia: A Study of Mixed Methods. BMC Public Health, 19(1):669.
Verdonschot, P.F.M., & Besse-Lototskaya, A.A., 2014. Flight Distance of Mosquitoes (Culicidae): A Metadata Analysis to Support the Management of Barrier Zones Around Rewetted and Newly Constructed Wetlands. Limnologica, 45, pp.69–79.
Xu, Y.L., Li, F.Y., Ndikuryayo, F., Yang, W.C., Wang, H.M., 2018. Cholinesterases and Engineered Mutants for the Detection of Organophosphorus Pesticide Residues. Sensors, 18, pp.4281.
Yadav. K., Rabha, B., Dhiman, S., Veer, V., 2015. Multi-insecticide Susceptibility Evaluation of Dengue Vectors Stegomyia albopicta and St. aegypti in Assam, India. Parasit Vectors, 3(8), pp.143.
Yang, F., Schildhauer, S., Billeter, S.A., Hardstone-Yoshimizu, M., Payne, R., Pakingan, M.J., Metzger, M.E., Liebman, K.A., Hu, R., Kramer, V., & Padgett, K.A., 2020. Insecticide Resistance Status of Aedes aegypti (Diptera: Culicidae) in California by Biochemical Assays. Journal of Medical Entomology, 57(4), pp.1176–1183.
Yuliani, D.M., Hadi, U.K., Soviana, S., & Retnani, E.B., 2021. Habitat Characteristic and Density of Larva Aedes albopictus in Curug, Tangerang District, Banten Province, Indonesia 2018. Biodiversitas Journal of Biological Diversity, 22(12).
Zhang, Y., Ren, H., & Shi, R., 2022. Influences of Differentiated Residence and Workplace Location on the Identification of Spatiotemporal Patterns of Dengue Epidemics: A Case Study in Guangzhou, China. Int. J. Environ. Res. Public Health, 19, pp.13393.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.