Medical Waste Incineration Ash Waste: Impact On Environmental Health And Its Potential To Be Used For Paving Blocks

Siti Rachmawati(1), Syafrudin Syafrudin(2), Budiyono Budiyono(3),


(1) Department of Doctoral Environmental Science, Faculty of Postgraduate, Diponegoro University, Semarang 50275, Indonesia Department of Environmental Science, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Surakarta 57126, Indonesia
(2) Department of Doctoral Environmental Science, Faculty of Postgraduate, Diponegoro University, Semarang 50275, Indonesia Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
(3) Department of Doctoral Environmental Science, Faculty of Postgraduate, Diponegoro University, Semarang 50275, Indonesia Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia

Abstract

ABSTRACT : It is known that medical waste has increased in recent years due to the Covid-19 pandemic, which was followed by an increase in ash from burning medical waste processing using incinerators. The objective of this study is to determine the impact of using medical waste incineration ashes on health and the environment, as well as the potential for using solidification techniques to make the ash into paving blocks. The ash used was obtained from a medical waste processing facility in Surakarta, Indonesia's Central Java. The test object was created using seven different combinations of ash, sand, and cement with a water-cement ration of 0.5 and cured for 28 days. The optimum compressive strength condition was determined as the basis for the composition of medical waste incineration ash as a mixture of paving block raw materials, which was then tested for the content of heavy metal compounds using the SNI 8808: 2019 method. According to research, the ash from medical waste incineration contains heavy metal compounds such as Pb, Ni, Cu, and Cd and has the potential to be used as a mortar mixture. Six of the seven mortar compositions with the addition of incineration medical waste ash met the compressive strength requirements of SNI 03-0691-1996 for category D paving blocks to be used in parks and other places.

 

Keywords

burning ash, medical waste, paving blocks

Full Text:

PDF

References

Akyıldız, A., Köse, E. T., & Yıldız, A. (2017). Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash. Construction and Building Materials, 138, 326–332. https://doi.org/10.1016/j.conbuildmat.2017.02.017

Basuki, I., Lubis, M. F., Daulay, M. A., & Luthan, P. L. A. (2019). Paving Block Berbasis Abu Gosok. Juni, 5(1), 1–7.

Dehghanifard, E., & Dehghani, M. H. (2018). Evaluation and analysis of municipal solid wastes in Tehran, Iran. MethodsX, 5(February), 312–321. https://doi.org/10.1016/j.mex.2018.04.003

Filipponi, P., Polettini, A., Pomi, R., & Sirini, P. (2003). Physical and mechanical properties of cement-based products containing incineration bottom ash. Waste Management, 23(2), 145–156. https://doi.org/10.1016/S0956-053X(02)00041-7

Forsyth, J. E., Weaver, K. L., Maher, K., Islam, M. S., Raqib, R., Rahman, M., Fendorf, S., & Luby, S. P. (2019). Sources of blood lead exposure in Rural Bangladesh. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b00744

Gidarakos, E., Petrantonaki, M., Anastasiadou, K., & Schramm, K. W. (2009). Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. Journal of Hazardous Materials, 172(2–3), 935–942. https://doi.org/10.1016/j.jhazmat.2009.07.080

Gumadita, B. F., Bahri, S., & Yenie, E. (2017). Pemanfaatan Limbah Medis Padat Infeksius RSUD Arifin Achmad Pekanbaru Dengan Teknik Solidifikasi Sebagai Campuran Batako. Jom F Teknik, 4(1), 1–9.

Hutagaol, D., & Butar-Butar, R. (2016). Penggunaan Limbah Bata Merah Sebagai Tambahan Semen Dalam Pembuatan Paving Block. Educational Building, 2(1), 41–47. https://doi.org/10.24114/eb.v2i1.3747

IARC. (2012). IARC monographs on the evaluation of carcinogenic risks to humans: Cadmium and cadmium compounds. IARC Monographs, 1993, 121–145. https://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-8.pdf

Jorge Mendoza, C., Tatiana Garrido, R., Cristian Quilodrán, R., Matías Segovia, C., & José Parada, A. (2017). Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere, 176, 81–88. https://doi.org/10.1016/j.chemosphere.2017.02.066

Jung, C. H., Matsuto, T., Tanaka, N., & Okada, T. (2004). Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Management, 24(4), 381–391. https://doi.org/10.1016/S0956-053X(03)00137-5

Khairuna, W., & Zaki, M. (2017). PEMANFAATAN ABU DASAR INSINERATOR SEBAGAI BAHAN BANGUNAN. Pascasarjana Universitas Syiah Kuala, 9(4), 126.

Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Canfield, R. L., Dietrich, K. N., Bornschein, R., Greene, T., Rothenberg, S. J., Needleman, H. L., Schnaas, L., Wasserman, G., Graziano, J., & Roberts, R. (2005). Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environmental Health Perspectives, 113(7), 894–899. https://doi.org/10.1289/ehp.7688

Lo, H. M., & Liao, Y. L. (2007). The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites. Journal of Hazardous Materials, 142(1–2), 512–519. https://doi.org/10.1016/j.jhazmat.2006.08.054

M. Aminul Haque, M.A. Hoque, S. S. and M. H. (2014). Immobilization of Heavy Metals from Paving Block Constructed with Cement and Sand-solid Waste Matrix. Asian Journal of Applied Sciences, 7(3), 150–157. https://doi.org/10.3923/ajaps.2014.150.157

Md Anamul, H., Rahman, J., & Tanvir, M. (2012). Zn and Ni of Bottom Ash as a Potential Diffuse Pollutant and Their Application as “Fine Aggregate.” Journal of Civil Engineering Research, 2(6), 64–72. https://doi.org/10.5923/j.jce.20120206.03

Miao, J., Li, J., Wang, F., Xia, X., Deng, S., & Zhang, S. (2022). Characterization and evaluation of the leachability of bottom ash from a mobile emergency incinerator of COVID-19 medical waste: A case study in Huoshenshan Hospital, Wuhan, China. Journal of Environmental Management, 303. https://doi.org/10.1016/j.jenvman.2021.114161

Mizwar, A., Rohman, T., Mangkurat, U. L., & Mangkurat, U. L. (2012). Pemanfaatan Limbah Lumpur Berminyak Melalui Proses Stabilisasi-Solidifikasi Untuk Pembuatan Bata Beton Berlubang Oily Sludge Waste Utilization Through Stabilization-Solidification Process To Make Hollow Concrete Block Penyerapan Gas Co Hasil Pembakaran Sa. Jurnal Purifikasi, 13(85).

Morfi, C. W. (2020). Kajian Terkini CoronaVirus Disease 2019 (COVID-19). Jurnal Ilmu Kesehatan Indonesia, 1(1), 1–8. https://doi.org/10.25077/jikesi.v1i1.13

Patel, K. M., & Devatha, C. P. (2019). Investigation on leaching behaviour of toxic metals from biomedical ash and its controlling mechanism. Environmental Science and Pollution Research, 26(6), 6191–6198. https://doi.org/10.1007/s11356-018-3953-3

Pechyen, C., & Ummartyotin, S. (2017). Development of isotactic polypropylene and stearic acid-modified calcium carbonate composite: a promising material for microwavable packaging. Polymer Bulletin, 74(2), 431–444. https://doi.org/10.1007/s00289-016-1722-3

Q.Y. Chen ; M. Tyrer ; C.D. Hills ; X.M. Yang ; P. Carey. (2009). Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Management, 29(1), 390–403. https://doi.org/https://doi.org/10.1016/j.wasman.2008.01.019

Rachmawati, S., Syafrudin, S., & Budiyono, B. (2022). Assessment of Health Service Facility Ash Waste Based on Policy (Case Study of Moewardi Hospital Surakarta). IOP Conference Series: Earth and Environmental Science, 1098(1). https://doi.org/10.1088/1755-1315/1098/1/012003

Rahman, M. M., Bodrud-Doza, M., Griffiths, M. D., & Mamun, M. A. (2020). Biomedical waste amid COVID-19: perspectives from Bangladesh. The Lancet Global Health, 8(10), e1262. https://doi.org/10.1016/S2214-109X(20)30349-1

Ramadhansyah, M. F., Nugroho, A., & Wahyuningsih, N. E. (2021). Policy Brief : Pengolahan Abu Hasil Pembakaran Limbah Medis sebagai Alternatif Pengganti Bahan Bangunan yang Berasal dari Fasilitas Pelayanan Kesehatan. Jurnal Serambi Engineering, 6(4), 2354–2362. https://doi.org/10.32672/jse.v6i4.3495

Rozumová, L., Motyka, O., Čabanová, K., & Seidlerová, J. (2015). Stabilization of waste bottom ash generated from hazardous waste incinerators. Journal of Environmental Chemical Engineering, 3(1), 1–9. https://doi.org/10.1016/j.jece.2014.11.006

Trihadiningrum, Y. (2016). Pengelolaan limbah bahan berbahaya & beracun (B3). Teknosain.

Tzanakos, K., Mimilidou, A., Anastasiadou, K., Stratakis, A., & Gidarakos, E. (2014). Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Management, 34(10), 1823–1828. https://doi.org/10.1016/j.wasman.2014.03.021

Uriu-Adams, J. Y., & Keen, C. L. (2005). Copper, oxidative stress, and human health. Molecular Aspects of Medicine, 26(4-5 SPEC. ISS.), 268–298. https://doi.org/10.1016/j.mam.2005.07.015

Xie, Y., & Zhu, J. (2012). The Detoxification of Medical Waste Incineration Fly Ash using Self-Propagating Reaction. Procedia Environmental Sciences, 16, 222–228. https://doi.org/10.1016/j.proenv.2012.10.031

Yang, J., Ma, S., Zhou, J., Song, Y., & Li, F. (2018). Heavy metal contamination in soils and vegetables and health risk assessment of inhabitants in Daye, China. Journal of International Medical Research, 46(8), 3374–3387. https://doi.org/10.1177/0300060518758585

Zhao, W., Van Der Voet, E., Huppes, G., & Zhang, Y. (2009). Comparative life cycle assessments of incineration and non-incineration treatments for medical waste. International Journal of Life Cycle Assessment, 14(2), 114–121. https://doi.org/10.1007/s11367-008-0049-1

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.