Synthesis of Crude Palm Oil-Based Polyol Ester as Biolubricant

Miratna Juwita, Muhammad Faizal, Muhammad Said, Juni Prianto, R. Arie Hartawan, Nabila Aprianti

Abstract

The decline in crude oil reserves as a raw material for the manufacture of lubricants and the need to reduce pollution from mineral lubricants has begun to encourage the use of waste and pollution reduction technologies to reduce environmental problems. One realization is an alternative lubricant called biolubricant. Biolubricant is considered rapidly biodegradable, non-toxic, and thought to pose less or no risk to the environment and its users compared to petroleum-based lubricants. This study aimed to produce polyol esters as biolubricant through the acetylation reaction of polyols from crude palm oil (CPO) and to investigate the physical and chemical properties of the resulting polyol esters. From the study results, the kinematic viscosity of 40 °C in the resulting polyol ester was 46.2339 cSt, while the kinematic viscosity at 100 °C was 8.7417 cSt. The viscosity index and flash point of polyol ester obtained were 144.0818 and 282.3 °C. The highest conversion of 38.41% polyol ester production was achieved at 80 °C for 35 minutes using a 3% wt/wt catalyst. This study shows that palm oil esters have great potential to obtain lubricants with high biodegradability and better physicochemical properties.

Keywords

acetylation; biolubricant; bentonite; crude palm oil; polyol ester

Full Text:

PDF

References

Ahmed, N. S., Nassar, A. M., Nasser, R. M., Abdel Raouf, M. E., & El-Kafrawy, A. F. (2014). Novel terpolymers as pour point depressants and viscosity modifiers for lube oil. Petroleum Science and Technology, 32(6), 680–687.

Arumugam, S., Chengareddy, P., Tamilarasan, A., & Santhanam, V. (2019). RSM and Crow Search Algorithm-Based Optimization of Ultrasonicated Transesterification Process Parameters on Synthesis of Polyol Ester-Based Biolubricant. Arabian Journal for Science and Engineering, 44(6), 5535–5548.

Bolina, I. C. A., Gomes, R. A. B., & Mendes, A. A. (2021). Biolubricant Production from Several Oleaginous Feedstocks Using Lipases as Catalysts: Current Scenario and Future Perspectives. Bioenergy Research, 14(4), 1039–1057.

Chan, C. H., Tang, S. W., Mohd, N. K., Lim, W. H., Yeong, S. K., & Idris, Z. (2018). Tribological behavior of biolubricant base stocks and additives. Renewable and Sustainable Energy Reviews, 93(March 2017), 145–157.

Chen, J., Bian, X., Rapp, G., Lang, J., Montoya, A., Trethowan, R., Bouyssiere, B., Portha, J. F., Jaubert, J. N., Pratt, P., & Coniglio, L. (2019). From ethyl biodiesel to biolubricants: Options for an Indian mustard integrated biorefinery toward a green and circular economy. Industrial Crops and Products, 137(April), 597–614.

do Valle, C. P., Rodrigues, J. S., Fechine, L. M. U. D., Cunha, A. P., Queiroz Malveira, J., Luna, F. M. T., & Ricardo, N. M. P. S. (2018). Chemical modification of Tilapia oil for biolubricant applications. Journal of Cleaner Production, 191, 158–166.

Egbuna, S. O., Nwachukwu, U. J., Agu, C. M., Asadu, C. O., & Okolo, B. (2021). Production of biolubricant samples from palm kernel oil using different chemical modification approaches. Engineering Reports, 3(11), 1–19.

Encinar, J. M., Nogales, S., & González, J. F. (2020). Biodiesel and biolubricant production from different vegetable oils through transesterification. Engineering Reports, 2(12), 1–10.

Heikal, E. K., Elmelawy, M. S., Khalil, S. A., & Elbasuny, N. M. (2017). Manufacturing of environment friendly biolubricants from vegetable oils. Egyptian Journal of Petroleum, 26(1), 53–59.

Ho, C. K., McAuley, K. B., & Peppley, B. A. (2019). Biolubricants through renewable hydrocarbons: A perspective for new opportunities. Renewable and Sustainable Energy Reviews, 113(June), 109261.

Kamalakar, K., Mahesh, G., Prasad, R. B. N., & Karuna, M. S. L. (2015). A novel methodology for the synthesis of acyloxy castor polyol esters: Low pour point lubricant base stocks. Journal of Oleo Science, 64(12), 1283–1295.

McNutt, J., & He, Q. S. (2016). Development of biolubricants from vegetable oils via chemical modification. Journal of Industrial and Engineering Chemistry, 36, 1–12.

Mobarak, H. M., Niza Mohamad, E., Masjuki, H. H., Kalam, M. A., Al Mahmud, K. A. H., Habibullah, M., & Ashraful, A. M. (2014). The prospects of biolubricants as alternatives in automotive applications. Renewable and Sustainable Energy Reviews, 33, 34–43.

Moreira, D. R., Chaves, P. O. B., Ferreira, E. N., Arruda, T. B. M. G., Rodrigues, F. E. A., Neto, J. F. C., Petzhold, C. L., Maier, M. E., & Ricardo, N. M. P. S. (2020). Moringa polyesters as eco-friendly lubricants and its blends with naphthalenic lubricant. Industrial Crops and Products, 158(October).

Ngadi, N., Ma, L. N., Alias, H., Johari, A., Rahman, R. A., Mohamad, M. (2015). Production of Biodiesel from Waste Cooking Oil via Ultrasonic-Assisted Catalytic System. Applied Mechanics and Materials, 699, 552-557.

Rashmi, W., Khalid, M., Lim, X. Y., Gupta, T. C. S. M., & Arwin, G. Z. (2017). Tribological studies on graphene/TMP based nanolubricant. Journal of Engineering Science and Technology, 12(2), 365–373.

Rios, Í. C., Cordeiro, J. P., Arruda, T. B. M. G., Rodrigues, F. E. A., Uchoa, A. F. J., Luna, F. M. T., Cavalcante, C. L., & Ricardo, N. M. P. S. (2020). Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market. Industrial Crops and Products, 145(December 2019), 112000.

Roni, K.A., Putra, M. A. M., Herawati, N., Mardwita, Rifdah & Juniar, H. (2021). The Effect of Catalyst Amount & Reacters Comperative on Glycerol Conversion From Castrol Oil With Catalyst of Pertamina Cracking Process Unit III Palembang. Journal TEKNO, 18(2).

Salih, N., Salimon, J., Abdullah, B. M., & Yousif, E. (2017). Thermo-oxidation, friction-reducing and physicochemical properties of ricinoleic acid based-diester biolubricants. Arabian Journal of Chemistry, 10, S2273-S2280.

Salimon, J., Salih, N., & Yousif, E. (2012). Biolubricant basestocks from chemically modified ricinoleic acid. Journal of King Saud University - Science, 24(1), 11–17.

Sapawe, N., Farhan Hanafi, M., & Samion, S. (2019). The Use of Palm Oil as New Alternative Biolubricant for Improving Anti-Friction and Anti-Wear Properties. Materials Today: Proceedings, 19, 1126–1135.

Shara, S. I., Eissa, E. A., & Basta, J. S. (2018). Polymers additive for improving the flow properties of lubricating oil. Egyptian Journal of Petroleum, 27(4), 795–799.

Suárez, C. A., Avellaneda, D. R., & Caballero, G. E. R. (2015). Effect of Temperature and Catalyst Concentration on Polyglycerol During Synthesis. International Journal of Polymer Science, 1-8 (June)

Tulashie, S. K., & Kotoka, F. (2020). The potential of castor, palm kernel, and coconut oils as biolubricant base oil via chemical modification and formulation. Thermal Science and Engineering Progress, 16(January).

Yang, J., Han, Y., Lin, J., Zhu, Y., Wang, F., Deng, L., Zhang, H., Xu, X., & Cui, W. (2020). Ball-Bearing-Inspired Polyampholyte-Modified Microspheres as Bio-Lubricants Attenuate Osteoarthritis. Small, 16(44), 1–14.

Zhang, W., Ji, H., Song, Y., Ma, S., Xiong, W., Chen, C., Chen, B., & Zhang, X. (2020). Green preparation of branched biolubricant by chemically modifying waste cooking oil with lipase and ionic liquid. Journal of Cleaner Production, 274, 122918.

Refbacks

  • There are currently no refbacks.