Addition Rice Husk on the Density and Impact Strength of Non-Asbestos Brake Pad Composites Prepared by The Hand Layup Method

Deni Fajar Fitriyana, Rahmat Doni Widodo, Kriswanto Kriswanto, Ahmad Athoillah, Ares Yudi Prasetyo, Mochamad Dzaki Alrasyid

Abstract

In train operation, brakes are an essential component because they involve the safety of passengers. Therefore, brake pads must be replaced periodically according to their lifespan. Currently, the most widely used train brake pad material is composite. Unfortunately, most train brake pads in Indonesia still use imported products because no industry can produce train brake pads of the desired quality. This study aims to manufacture and characterize composite materials for friction material for train brake pads that meet quality standards to substitute imported products. It needs to reduce dependence on imported products while at the same time encouraging the strengthening of the structure of the domestic manufacturing industry. In addition, agricultural waste in rice husks will be used to produce more environmentally friendly products. In this study, the composition of the types of composite materials, which include binder, reinforcement, abrasive, and filler materials, will be examined. Making composite materials in this study will use the hand layup method. Material characterization carried out includes impact testing and density. The characterization results show that using rice husk as a filler greatly influences the density of the resulting composite material. Specimen 5, made from epoxy, rice husk, iron filings, and Al2O3 (wt.%) at 50%, 20%, 15%, and 15%, respectively, was able to produce a higher density compared to the composite without rice husk and epoxy material. The results of this density test support the results of the impact tests that have been carried out. The higher the rice husk content, the higher the density produced. Adding rice husk can increase the mechanical properties of the resulting composite material.

Keywords

community; membrane; filtration; persimmon; fruit juice

Full Text:

PDF

References

Abutu, J., Lawal, S. A., Ndaliman, M. B., & Lafia-Araga, R.A. (2018A). An Overview of Brake Pad Production Using Non-Hazardous Reinforcement Materials. Acta Technica Corvininesis-Bulletin of Engineering, 11(3), 143–156.

Abutu, J., Lawal, S. A., Ndaliman, M. B., Lafia-Araga, R. A., Adedipe, O., & Choudhury, I. A. (2018B). Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis. Engineering Science and Technology, an International Journal, 21(4), 787–797.

Amirjan, M. (2019). Microstructure, wear and friction behavior of nanocomposite materials with natural ingredients. Tribology International, 131, 184–190.

Arman, M., Singhal, S., Chopra, P., & Sarkar, M. (2018). A review on material and wear analysis of automotive Break Pad. Materials Today: Proceedings, 5(14, Part 2), 28305–28312.

Cionita, T., Siregar, J. P., Shing, W. L., Hee, C. W., Fitriyana, D. F., Jaafar, J., Junid, R., Irawan, A. P., & Hadi, A. E. (2022). The Influence of Filler Loading and Alkaline Treatment on the Mechanical Properties of Palm Kernel Cake Filler Reinforced Epoxy Composites. Polymers, 14(15), 1–17.

Hadi, A. E., Hamdan, M. H. M., Siregar, J. P., Junid, R., Tezara, C., Irawan, A. P., Fitriyana, D. F., & Rihayat, T. (2021). Application of Micromechanical Modelling for the Evaluation of Elastic Moduli of Hybrid Woven Jute–Ramie Reinforced Unsaturated Polyester Composites. In Polymers (Vol. 13, Issue 15).

Hadi, A. E., Tezara, C., Fitriyana, D. F., Siregar, J. P., Oumer, A. N., Hamdan, M. H. M., Jaafar, J., Zalinawati, M., & Irawan, A. P. (2021). Effect of Water Absorption Behaviour on Tensile Properties of Hybrid Jute-Roselle Woven Fibre Reinforced Polyester Composites. International Journal of Automotive and Mechanical Engineering (IJAME), 18(4), 9170–9178.

Iman, N., & Widjanarko, D. (2020). Karakteristik Komposit Partikel Arang Kayu Akasia Bermatrik Epoxy Sebagai Salah Satu Alternatif Kampas Rem Non-Asbestos. Rotasi, 22(1), 7–13.

Irawan, A. P., Fitriyana, D. F., Siregar, J. P., Cionita, T., Anggarina, P. T., Utama, D. W., Rihayat, T., Rusiyanto, R., Dimyati, S., Aripin, M. B., Ismail, R., Bayuseno, A. P., Baskara, G. D., Khafidh, M., Putera, F. P., & Yotenka, R. (2023). Influence of Varying Concentrations of Epoxy, Rice Husk, Al2O3, and Fe2O3 on the Properties of Brake Friction Materials Prepared Using Hand Layup Method. Polymers, 15(2597), 1–19.

Irawan, A. P., Fitriyana, D. F., Tezara, C., Siregar, J. P., Laksmidewi, D., Baskara, G. D., Abdullah, M. Z., Junid, R., Hadi, A. E., Hamdan, M. H. M., & Najid, N. (2022). Overview of the Important Factors Influencing the Performance of Eco-Friendly Brake Pads. Polymers, 14(6), 1–22.

Jiang, Z., & Yuan, Y. (2018). Effects of particle size distribution of silica on properties of PTFE/SiO2 composites. Materials Research Express, 5(6). https://doi.org/10.1088/2053-1591/aac99f

Lawal, S. S., Ademoh, N. A., Bala, K. C., & Abdulrahman, A. S. (2019). A Review of the Compositions, Processing, Materials and Properties of Brake Pad Production. Journal of Physics: Conference Series, 1378(3).

Nawangsari, P., Jamasri, & Rochardjo, H. S. B. (2019). Effect of Phenolic Resin on Density, Porosity, Hardness, Thermal Stability, and Friction Performance as A Binder in Non-Asbestos Organic Brake Pad. IOP Conference Series: Materials Science and Engineering, 547(1).

Nguyen, H., Zatar, W., & Mutsuyoshi, H. (2017). 4 - Mechanical properties of hybrid polymer composite. In V. K. Thakur, M. K. Thakur, & A. B. T.-H. P. C. M. Pappu (Eds.), Hybrid Polymer Composite Materials Properties and Characterisation (pp. 83–113). Woodhead Publishing.

OGAH, O., & Timothy, U. (2018). Mechanical Behavior of Agricultural Waste Fibers Reinforced Vinyl Ester Bio-composites. Asian Journal of Physical and Chemical Sciences, 5, 1–10.

Rihayat, T., Hadi, A., Aidy, N., Safitri, A., Siregar, J., Cionita, T., Purna Irawan, A., Mohamad Hamdan, M. H., & Fitriyana, D. (2021). Biodegradation of Polylactic Acid-Based Bio Composites Reinforced with Chitosan and Essential Oils as Anti-Microbial Material for Food Packaging. Polymers, 13, 4019.

Singaravelu, D. L., Vijay, R., & Filip, P. (2019). Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear, 426–427, 1129–1141.

Suhot, M. A., Hassan, M. Z., Aziz, S. A., & Md Daud, M. Y. (2021). Recent progress of rice husk reinforced polymer composites: A review. Polymers, 13(15).

Wijaya S, I. N. G., Ary Subagia, I. D. G., & Septiadi, W. N. (2016). Charpy impact test pada kampas rem hybrid komposit phenolic resin matrik dengan penguat serbuk basalt-Alumina-kulit kerang. Jurnal Energi Dan Manufaktur, 9(2), 180–185.

Suriadi, I. G. A. K., & Atmika, I. K. A. (2019). Mechanical properties and fluid absorption at the brake lining of hybrid composite. IOP Conference Series: Materials Science and Engineering, 539(1), 6–11.

Tezara, C., Hadi, A. E., Siregar, J. P., Muhamad, Z., Hazim, M., Hamdan, M., Oumer, A. N., Jaafar, J., Irawan, A. P., & Rihayat, T. (2021). The Effect of Hybridisation on Mechanical Properties and Water Absorption Behaviour of Woven Jute / Ramie Reinforced Epoxy Composites. Polymers, 1–17.

Refbacks

  • There are currently no refbacks.