Comparative Analysis of ADASYN-SVM and SMOTE-SVM Methods on the Detection of Type 2 Diabetes Mellitus
(1) Institut Teknologi Telkom Purwokerto
Abstract
Keywords
Full Text:
PDFReferences
Khairani. Info Datin (Pusat Data dan Informasi Kementrian Kesehatan Republik Indonesia). Hari diabetes sedunia. [Accessed December 12, 2021]. PDF article, https://pusdatin.kemkes.go.id/download.php?file=download/pusdatin/infodatin/infodatin-Diabetes-2018.pdf, 2018. (In Indonesian)
S. Pangribowo, et.al. Info Datin (Pusat Data dan Informasi Kementrian Kesehatan Republik Indonesia). Tetap produktif, cegah, dan atasi diabetes melitus. [Accessed December 12, 2021]. PDF article, https://pusdatin.kemkes.go.id/download.php?file=download/pusdatin/infodatin/Infodatin-2020-Diabetes-Melitus.pdf. 2020. (In Indonesian)
Ministry of Health RI. “Cegah, cegah, dan cegah: suara dunia perangi diabetes. [Accessed December 12, 2021]. https://www.kemkes.go.id/article/view/18121200001/prevent-prevent-and-prevent-the-voiceof-the-world-fight-diabetes.html. 2018. (In Indonesian)
World Health Organization (WHO). Diabetes country profiles. [Accessed December 12, 2021]. PDF article, https://www.who.int/diabetes/country-profiles/idn_en.pdf. 2021.
https://www.who.int/news-room/fact-sheets/detail/diabetes, Accessed December 12, 2021.
N. G. Ramadhan, Adiwijaya, and A. Romadhony. “Preprocessing handling to enhance detection of type 2 diabetes mellitus based on random forest,” Int. J. Adv. Comput. Sci. Appl., 12(7), pp. 223-228. 2021.
Q. Zou, K. Qu, Y. Luo, D. Yin, Y. Ju, & H. Tang, “Predicting diabetes mellitus with machine learning techniques,” Front. Genet, 9, 515, 2018.
Z. Tafa, N. Pervetica, & B. Karahoda, “An intelligent system for diabetes prediction,” In 2015 4th Mediterr. Conf. Embed. Comput. (MECO) (pp. 378-382), IEEE, June 2015.
S. Mirza, S. Mittal, & M. Zaman, “Decision support predictive model for prognosis of diabetes using SMOTE and decision tree,” Int. J. Appl. Eng. Res., 13(11), pp. 9277-9282, 2018.
A. Azrar, Y. Ali, M. Awais, & K. Zaheer, “ Data mining models comparison for diabetes prediction,” Int. J. Adv. Comput. Sci. Appl., 9(8), pp. 320-323, 2018.
S. Saru, & S. Subashree, “Analysis and prediction of diabetes using machine learning,” Int. J. Emerg. Technol. Innov. Eng., 5(4). 2019.
Q. Wang, W. Cao, J. Guo, J. Ren, Y. Cheng, & D. N. Davis, “DMP_MI: an effective diabetes mellitus classification algorithm on imbalanced data with missing values,” IEEE Access, 7, 102232-102238, 2019.
Tyagi, Shivani, and S. Mittal. "Sampling approaches for imbalanced data classification problem in machine learning." Proc. of ICRIC 2019. Springer, Cham, pp. 209-221, 2020.
Z. Shi, “Improving k-nearest neighbors algorithm for imbalanced data classification,” In IOP Conf. Ser.: Mater. Sci. Eng. (Vol. 719, No. 1, p. 012072), IOP Publishing, 2020.
H. Wu, S. Yang, Z. Huang, J. He, & X. Wang, “Type 2 diabetes mellitus prediction model based on data mining. Inform. Med. Unlocked, 10, pp. 100-107, 2018.
M. Shuja, S. Mittal, & M. Zaman, “Effective prediction of type ii diabetes mellitus using data mining classifiers and SMOTE,” In Adv. Comput. Intell. Syst., (pp. 195-211), Springer, Singapore, 2020.
M. D. Purbolaksono, M. I. Tantowi, A. I. Hidayat, & A. Adiwijaya, “ Perbandingan support vector machine dan modified balanced random forest dalam deteksi pasien penyakit diabetes,” J. RESTI (Rekayasa Sist. Dan Teknol. Inform., 5(2), pp. 393-399, 2021.
J. P. Kandhasamy and S. Balamurali. "Performance analysis of classifier models to predict diabetes mellitus," Procedia Comput. Sci., 47, pp. 45-51, 2015.
M. Md, et al. "Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm," Comput. Methods Programs Biomed, 152, pp. 23-34, 2017.
N. V. Chawla, K. W. Bowyer, L. O. Hall, & W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” J. Artif. Intell. Res., 16, pp. 321-357, 2002.
H. He, Y. Bai, E. A. Garcia, & S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” In 2008 IEEE Int. Jt. Conf. Neural. Netw. (IEEE World Congr. Comput. Intell.) (pp. 1322-1328), IEEE, June 2008.
I. Tomek, “Two modifications of CNN,” IEEE Trans. Syst. Man Cybern. 6, pp. 769–772. 1976.
E. García-Gonzalo, Z. Fernández-Muñiz, P. J. García Nieto, A. Bernardo Sánchez, M. Menéndez & M. Fernández, “Hard-rock stability analysis for span design in entry-type excavations with learning classifiers,” Materials, 9(7), pp. 531, 2016.
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.