Enhancing Transportation Route Optimization Through Genetic Algorithm-Based Vehicle Routing Problem Method

Sidiq Syamsul Hidayat(1), Bagaskara Bagaskara(2), Amin Suharjono(3), Irfan Mujahidin(4),


(1) Department of Electrical Engineering, Politeknik Negeri Semarang, Indonesia
(2) Department of Electrical Engineering, Politeknik Negeri Semarang, Indonesia
(3) Department of Electrical Engineering, Politeknik Negeri Semarang, Indonesia
(4) Department of Electrical Engineering, Politeknik Negeri Semarang, Indonesia

Abstract

Purpose: The purpose of this study is to identify effective and efficient waste collection route for cost savings. The focus is on Tembalang District, where waste management has been compromised due to inefficient transportation.

Methods: The study employs genetic algorithm to ascertain the optimal routes for waste collection vehicles. This method seeks to design an improved transportation system, taking waste from transfer stations (TPS) to landfills.

Results: The devised waste transport model from the study demonstrated an optimized route for Tembalang Sub-District, with a total distance of 17.90 km and took 49 minutes. This contrasts with the existing route defined by the Sanitation Department, which spans 18.20 km and requires 1 hour and 15 minutes.

Novelty: Innovative application of the Vehicle Routing Problem method coupled with the Genetic Algorithm. This approach resulted in a significant reduction of time (by 35%) compared to traditional routing systems, and thus minimizing the number of waste collection vehicles required and enhancing overall waste management in Semarang.

Keywords

Algorithm; Vehicle routing; Transport route optimization; Waste transportation routes

Full Text:

PDF

References

B. S. Ramadan et al., “Potential Risks of Open Waste Burning at the Household Level: A Case Study of Semarang, Indonesia,” Aerosol Air Qual. Res., vol. 23, no. 5, 2023, doi: 10.4209/aaqr.220412.

R. N. Fitriana, A. B. Ifada, T. O. P. D. Lestari, and S. R. Hidayah, “Performance Evaluation and Measurement of SMEs King of Honey Using the Green SCOR Metho,” J. Soft Comput. Explor., vol. 3, no. 1, pp. 12–18, 2022, doi: 10.52465/joscex.v3i1.63.

Z. Wang, J. Yu, W. Hao, and J. Xiang, “Joint Optimization of Running Route and Scheduling for the Mixed Demand Responsive Feeder Transit with Time-Dependent Travel Times,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4, pp. 2498–2509, 2021, doi: 10.1109/TITS.2020.3041743.

M. S. Umam, M. Mustafid, and S. Suryono, “A hybrid genetic algorithm and tabu search for minimizing makespan in flow shop scheduling problem,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 7459–7467, 2021, doi: 10.1016/j.jksuci.2021.08.025.

M. Z. Akkad, S. Haidar, and T. Bányai, “Design of Cyber-Physical Waste Management Systems Focusing on Energy Efficiency and Sustainability,” Designs, vol. 6, no. 2, 2022, doi: 10.3390/designs6020039.

M. A. Budihardjo, B. Z. E. Sutrisno, B. S. Ramadan, and I. S. Arumdani, “Hazardous and Toxic Waste Management Scenario From the Domestic and Office Sectors in Semarang City,” J. Sustain. Sci. Manag., vol. 18, no. 2, pp. 1–14, 2023, doi: 10.46754/jssm.2023.02.001.

M. A. Budihardjo, S. Y. Ardiansyah, and B. S. Ramadan, “Community-driven material recovery facility (CdMRF) for sustainable economic incentives of waste management: Evidence from Semarang City, Indonesia,” Habitat Int., vol. 119, no. November 2021, p. 102488, 2022, doi: 10.1016/j.habitatint.2021.102488.

B. S. Ramadan, I. Rachman, and T. Matsumoto, “Activity and emission inventory of open waste burning at the household level in developing countries: a case study of Semarang City,” J. Mater. Cycles Waste Manag., vol. 24, no. 3, pp. 1194–1204, 2022, doi: 10.1007/s10163-022-01371-3.

M. A. Budihardjo, N. G. Humaira, B. S. Ramadan, I. F. S. Wahyuningrum, and H. S. Huboyo, “Strategies to reduce greenhouse gas emissions from municipal solid waste management in Indonesia: The case of Semarang City,” Alexandria Eng. J., vol. 69, pp. 771–783, 2023, doi: 10.1016/j.aej.2023.02.029.

N. Abdullah et al., IoT-Based Waste Management System in Formal and Informal Public Areas in Mecca, vol. 19, no. 20. 2022. doi: 10.3390/ijerph192013066.

B. Merchán-Sanmartín, P. Carrión-Mero, S. Suárez-Zamora, M. Aguilar-Aguilar, and E. Berrezueta, “Design of a Solid Waste Separation, Valuation and Recycling Centre on a University Campus. Case Study,” Int. J. Sustain. Dev. Plan., vol. 17, no. 4, pp. 1067–1076, 2022, doi: 10.18280/ijsdp.170403.

J. Zhou, M. Zhang, and S. Wu, “Multi-Objective Vehicle Routing Problem for Waste Classification and Collection with Sustainable Concerns: The Case of Shanghai City,” Sustain., vol. 14, no. 18, 2022, doi: 10.3390/su141811498.

D. A. Prasetya, A. Sanusi, G. Chandrarin, E. Roikhah, I. Mujahidin, and R. Arifuddin, “Small and Medium Enterprises Problem and Potential Solutions for Waste Management,” J. Southwest Jiaotong Univ., vol. 54, no. 6, 2019, doi: 10.35741/issn.0258-2724.54.6.21.

H. Wang, W. Yi, and Y. Liu, “Optimal Route Design for Construction Waste Transportation Systems: Mathematical Models and Solution Algorithms,” Mathematics, vol. 10, no. 22, 2022, doi: 10.3390/math10224340.

D. A. Korzhakin and E. Sugiharti, “Implementation of Genetic Algorithm and Adaptive Neuro Fuzzy Inference System in Predicting Survival of Patients with Heart Failure,” Sci. J. Informatics, vol. 8, no. 2, pp. 251–257, 2021, doi: 10.15294/sji.v8i2.32803.

W. F. Abror and M. Aziz, “Journal of Information System Bankruptcy Prediction Using Genetic Algorithm-Support Vector Machine ( GA-SVM ) Feature Selection and Stacking,” vol. 1, no. 2, pp. 103–108, 2023.

A. Alsobky, M. Ahmed, S. Al Agroudy, and K. El Araby, “A smart framework for municipal solid waste collection management: A case study in Greater Cairo Region,” Ain Shams Eng. J., vol. 14, no. 6, p. 102183, 2023, doi: 10.1016/j.asej.2023.102183.

Z. H. Ash’aari, F. M. Ramli, A. H. Sharaai, M. N. Chaudhry, and S. Fatima, “GIS-Based tools for optimizing municipal solid waste collection and transportation routes,” Int J Env. Waste Manag, vol. 1, no. 1, 2022, doi: 10.1504/ijewm.2022.10039859.

S. S. Hidayat, D. Rahmawati, M. C. Ardi Prabowo, L. Triyono, and F. T. Putri, “Determining the Rice Seeds Quality Using Convolutional Neural Network,” Int. J. Informatics Vis., vol. 7, no. 2, pp. 527–534, 2023, doi: 10.30630/joiv.7.2.1175.

M. Zou et al., “Feature Compression Applications of Genetic Algorithm,” Front. Genet., vol. 13, no. March, pp. 1–13, 2022, doi: 10.3389/fgene.2022.757524.

R. R. Abo-Alsabeh and A. Salhi, “The Genetic Algorithm: A study survey,” Iraqi J. Sci., vol. 63, no. 3, pp. 1215–1231, 2022, doi: 10.24996/ijs.2022.63.3.27.

J. C. Figueroa-García, R. Neruda, and G. Hernandez-Pérez, “A genetic algorithm for multivariate missing data imputation,” Inf. Sci. (Ny)., vol. 619, pp. 947–967, 2023, doi: 10.1016/j.ins.2022.11.037.

E. Sonalitha et al., “Combined text mining: Fuzzy clustering for opinion mining on the traditional culture arts work,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 8, pp. 294–299, 2020, doi: 10.14569/IJACSA.2020.0110838.

D. K. Sharma, H. S. Hota, K. Brown, and R. Handa, “Integration of genetic algorithm with artificial neural network for stock market forecasting,” Int. J. Syst. Assur. Eng. Manag., vol. 13, no. s2, pp. 828–841, 2021, doi: 10.1007/s13198-021-01209-5.

Z. Wang, X. Zhang, Z. K. Zhang, and D. Sheng, “Credit portfolio optimization: A multi-objective genetic algorithm approach,” Borsa Istanbul Rev., vol. 22, no. 1, pp. 69–76, 2022, doi: 10.1016/j.bir.2021.01.004.

M. G. Rojas, A. C. Olivera, J. A. Carballido, and P. J. Vidal, “Memetic micro-genetic algorithms for cancer data classification,” Intell. Syst. with Appl., vol. 17, no. May 2022, p. 200173, 2023, doi: 10.1016/j.iswa.2022.200173.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.